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We study non-parametric methods for estimating the value function of
an infinite-horizon discounted Markov reward process (MRP). We analyze
the kernel-based least-squares temporal difference (LSTD) estimate, which
can be understood either as a non-parametric instrumental variables method,
or as a projected approximation to the Bellman fixed point equation. Our
analysis imposes no assumptions on the transition operator of the Markov
chain, but rather only conditions on the reward function and population-level
kernel LSTD solutions. Using empirical process theory and concentration in-
equalities, we establish a non-asymptotic upper bound on the error with ex-
plicit dependence on the effective horizon H = (1 − γ)−1 of the Markov
reward process, the eigenvalues of the associated kernel operator, as well as
the instance-dependent variance of the Bellman residual error. In addition,
we prove minimax lower bounds over sub-classes of MRPs, which shows
that our guarantees are optimal in terms of the sample size n and the effec-
tive horizon H . Whereas existing worst-case theory predicts cubic scaling
(H3) in the effective horizon, our theory reveals a much wider range of scal-
ings, depending on the kernel, the stationary distribution, and the variance of
the Bellman residual error. Notably, it is only parametric and near-parametric
problems that can ever achieve the worst-case cubic scaling.

1. Introduction. Markov decision processes provide a classical framework for model-
ing how to make optimal decisions in a sequential setting. They have been studied exten-
sively in statistics and operations research [3, 8, 9], control theory [5, 40], and computer
science [46]. Moreover, Markov decision processes have proven useful in a wide variety
of applications (e.g., [10, 46]), including inventory management, allocation of fire-fighting
resources, competitive game playing, and industrial process control. In much of the classi-
cal work, the model structure and parameters were assumed to be known, and principles of
dynamic programming were used to characterize and compute optimal decision rules, also
known as policies. By contrast, reinforcement learning (RL) refers to a class of statistical pro-
cedures suitable for settings in which the model structure and/or parameters are unknown. In
this context, a central problem is to use samples to evaluate the quality of a given policy, as
assessed via its value function. Indeed, the estimation of value functions serves as a funda-
mental building block for many RL algorithms [7, 46].

When a given policy is fixed, a Markov decision process reduces to a Markov reward
process (MRP). The value of any given initial state in an MRP corresponds to the expected
cumulative reward along a trajectory when starting from the given state; the collection of all
such state values defines the value function. The problem of estimating this function is known
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as policy evaluation, or value function estimation, and we use these terms interchangeably.
In practice, policy evaluation is challenging because the state space might be continuous,
or even when discrete, it might involve a prohibitively large number of possible states. For
this reason, practical methods for policy evaluation typically involve some form of function
approximation.

The simplest and most well-studied approach is based on linear function approximation, in
which the value function is approximated as a weighted combination of a fixed set of features.
This particular choice leads to the least-squares policy evaluation estimator, also known as the
least-squares temporal difference (LSTD) estimate, along with its online temporal difference
variants (e.g., [11, 31, 46, 48]). The choice of linear functions is attractive in that the LSTD
estimate is easy to compute, based on solving a linear system of equations. However, the
expressivity of linear functions is limited, and so that it is natural to seek approximations in
richer function classes.

In many types of statistical problems—among them regression, density estimation, di-
mension reduction, and clustering—methods based on reproducing kernel Hilbert spaces
(RKHSs) have proven useful [4, 21, 42, 50]. As we discuss in Section 1.1, kernel methods
have also proven useful in the specific context of reinforcement learning. Kernel methods
allow for much richer representations of functions, by working—in an implicit way—over
a possibly infinite set of features, as defined by the eigenfunctions of the associated kernel
integral operator. However, at the same time, due to the classical representer theorem [27], a
broad class of kernel-based estimators can be computed relatively easily by working directly
with n-dimensional kernel matrices, where n is the sample size.

The main contribution of this paper is to provide a sharp and non-asymptotic characteriza-
tion of the statistical properties of a family of kernel-based procedures for policy evaluation.
So as to bring our specific contributions into sharp focus, we study the case of infinite-horizon
γ-discounted Markov reward processes (MRPs), but much of our analysis and associated
techniques also have consequences for kernel methods in the finite-horizon setting. In our
analysis, we assume that we have access to the reward function and i.i.d. transition pairs
drawn from the stationary distribution. We analyze a kernel-based temporal difference esti-
mator, whose population limit corresponds to the fixed point of a projected Bellman operator.
We measure the difference between the empirical and population estimators in L2(µ) norm,
with µ denoting the stationary distribution. We refer to this L2(µ) error as the estimation
error. At a high level, the main contribution of this paper is to provide a sharp and partially
instance-dependent analysis of this estimation error.

1.1. Related work and our contributions. We begin by discussing related work and then,
with this context in place, provide a high-level overview of our contributions.

Related work. Here we provide a partial overview of past work, with an emphasis on those
estimation-theoretic papers most relevant for putting our results in context. The utility of
kernel methods in reinforcement learning is by now well-established, as attested to by the
lengthy line of previous papers on the topic (e.g., [1, 2, 13, 17, 18, 20, 28, 47]). In the special
case of a linear kernel function, the kernel-based method studied in this paper reduces to the
classical least-squares temporal difference (LSTD) method [11, 45, 46].

In terms of papers that provide guarantees on statistical estimation error for policy eval-
uation using non-parametric methods, early work by Ormoneit and Sen [37] studied the use
of local-averaging kernel methods for approximating value functions; they proved various
types of asymptotic consistency results. Munos and Szepesvari [33] studied methods for fit-
ted value iteration (FVI) under various types of ℓp-norms; under metric entropy conditions
on the function space, they proved various types of consistency results, but without providing
sharp or minimax-optimal guarantees. In later work, Farahmand et al. [16] studied a class
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of regularized procedures for both policy evaluation and policy optimization. Their analysis
is attractive in allowing for quite general function classes, with reproducing kernel Hilbert
spaces being an important special case. They provided guarantees under bounds on the sup-
norm metric entropy of the function classes at hand, and for certain function classes, they
argued that their bounds achieved the optimal scaling in sample size n. Farahmand et al.
also conjectured that it should be possible to prove similar guarantees using metric entropy
conditions in the µ-norm, and indeed, in the special case of RKHS classes, one consequence
of our results is to confirm this conjecture. A more recent line of work has studied vari-
ants of fitted Q-iteration (FQI) using neural network approximation, and provided statistical
guarantees under different notions of smoothness. For example, Fan et al. [15] exploited the
Hölder smoothness of the range of Bellman operator to derive bounds on estimation error;
Nguyen-Tang et al. [35] approximated deep ReLU networks using Besov classes; and Long et
al. [29] analyzed two-layer neural networks based on neural tangent kernels or Barron spaces.
All these works contribute to the understanding of empirical success of deep reinforcement
learning.

A notable feature of much past work is while it provides bounds on statistical error, it
does not carefully track the dependence on the (effective) horizon and model dynamics, as
well as the variance of the Bellman residual. As we argue in this paper, understanding how
non-parametric procedures depend on the latter quantities is essential—in particular, they are
the ingredients that actually distinguish the dynamic problem of value function estimation
from a typical (static) prediction problem, with ordinary non-parametric regression being the
archetypal example. In order to reveal this dependence, the analysis of this paper makes use of
empirical process techniques [49, 50] that have proven successful for analyzing kernel ridge
regression and related estimators (e.g., [41, 54, 59]). Essential for obtaining sharp rates is the
local Rademacher complexity, which has an explicit expression in terms of the eigenvalues
of the kernel integral operator [30]; see Chapters 12 and 13 in the book [50] for more details.

It is also worth noting that recent years have witnessed considerable progress in under-
standing policy evaluation in off-policy settings, and/or providing guarantees that have op-
timal instance-dependent rates. This work can be separated into work that is either asymp-
totic [23–25] and non-asymptotic [26, 38, 53, 55] in nature. In this non-asymptotic setting,
much of this work is focused on either the tabular case, or the simpler setting of linear func-
tion approximation, as opposed to the non-parametric cases of interest here. We note that our
results do depend on the problem instance, but this instance-dependence is not (yet) as sharp
as that established in the simpler setting of tabular problems; see the papers [26, 38] for sharp
results of this type.

This paper also makes connections to the large body of work on instrumental variable (IV)
methods (e.g., [12, 34, 51, 52]). It is known that the least-squares temporal difference (LSTD)
estimate can be viewed as a classical linear IV estimate [11]. More generally, the kernel-based
procedures in this paper correspond to a non-parametric form of an instrumental variable
method. While portions of our analysis are specific to reinforcement learning, we suspect
that our techniques can be adapted so as to provide non-asymptotic and instance-dependent
guarantees for other non-parametric IV estimates.

Our contributions. Consistency of any statistical estimator is certainly a desirable require-
ment. A more ambitious goal, and a centerpiece of high-dimensional statistics, is to give
a more refined non-asymptotic characterization, one which tracks not only sample size but
also other structural properties of the problem. In the context of policy evaluation for Markov
reward processes with discount factor γ ∈ (0,1), such structural properties include: (a) the
complexity of the population-level value function θ∗ being estimated; (b) the “richness” of
the function class used for approximation relative to the stationary measure of the Markov
chain; (c) the effective horizon H := (1− γ)−1, which measures the typical scale over which
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the discounted reward process evolves; and (d) the underlying noise function, given by the
variance of the Bellman residual. The latter two properties are of particular interest, since
they distinguish the dynamic nature of value function estimation from a standard problem of
static non-parametric estimation.

The main contribution of this paper is to give a precise characterization, including both
matching upper and lower bounds, on how a well-tuned version of the kernel-based LSTD es-
timate depends on all of these structural parameters. Notably, our characterization is instance-
dependent, in that the bounds vary considerably depending on the structure of θ∗ and the
associated variance of the Bellman residual error, along with the eigenvalues of the kernel
integral operator, which vary as a function of both the kernel function class, and the station-
ary measure of the Markov chain. En route to doing so, we provide specific guidance on how
the regularization parameter, essential for non-parametric methods such as those based on
RKHSs, should be chosen.

Theorem 3.1 provides two types of non-asymptotic bounds on the estimation error of a
regularized kernel LSTD estimate: a “slow” rate and a “fast” rate. These two guarantees dif-
fer in the way that the inherent noise of the problem is measured. While the “slow” guarantee
holds for any sample size n, the guarantee is based on a crude measure of the noise level,
based on bounds on the sup-norm and Hilbert norm of the population-level value function.
The second “fast” guarantee holds only once the sample size exceeds a certain threshold; at
the same time, it depends on the variance of the Bellman residual error, which is a funda-
mental quantity for the problem. Indeed, in our second main result, stated as Theorem 3.4,
we study the best performance of any procedure of two particular sub-classes of MRPs, and
prove lower bounds that match the “fast” rates from Theorem 3.1 in terms of all relevant
problem-dependent quantities. These matching upper and lower bounds establish the opti-
mality of our procedure.

Our theory applies to a fairly general class of kernel functions in arbitrary dimension,
with the rates specified in terms of the eigenvalues {µj}∞j=1 of the induced kernel operator.
It is important to note that these eigenvalues depend not just on the kernel, but also on the
stationary distribution of the Markov chain. One special case, of interest in its own right,
are kernels and stationary distributions for which these eigenvalues decay at a polynomial
rate, say µj ≍ (1/j)2α for some α > 1/2. Figure 1 highlights some interesting predictions
made by our theory regarding how the optimal L2(µ)-error should scale with the effective
horizon H = (1− γ)−1. As discussed in more detail in Section 3.3, we construct a “hard”
ensemble of MRPs for which our theory—both upper and lower bounds—guarantees that
for a fixed sample size, the squared L2(µ)-error should grow as H

2 (3α+1)

2α+1 . In the limit as
α→+∞, the kernel class becomes a parametric function class, and the horizon dependence
becomes the familiar cubic one H3 first elucidated by Azar et al. [19]. However, for gen-
uinely non-parametric classes where α is relatively small, the dependence on the effective
horizon is much milder—e.g., it scales as H8/3 for a kernel with α= 1. This reveals the in-
teresting phenomenon that non-parametric forms of value estimation exhibit milder horizon
dependence. Moreover, since our theory is instance-dependent via the variance of Bellman
residual, we can show that global minimax predictions are often conservative. In particular,
we also construct an “easy” ensemble for which the scaling in horizon is much milder, given
by H

4α

2α+1 . Again, as shown in Figure 1, these theoretical predictions capture the scaling of
the error in the effective horizon with high accuracy.

1.2. Paper organization and notation. The remainder of the paper is structured as fol-
lows. We begin in Section 2 by introducing background on Markov reward processes and
policy estimation, along with reproducing kernel Hilbert spaces and the kernel LSTD esti-
mate analyzed in this paper. Section 3 is devoted to the statement of our main results, along
with discussion of some of their consequences.
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Fig 1. Plots of the mean-squared error E∥θ̂ − θ∗∥2µ versus the effective horizon H = 1
1−γ

for different ensembles of problems. For each point (on each curve in each plot), the MSE
was approximated by taking a Monte Carlo average over T = 1000 trials; sample standard
deviations are shown as error bars. In each case, our theory predicts that the MSE should
grow as a function of the form Hη , where the exponent η > 0 is determined by α and the
ensemble type: we have η =

2 (3α+1)
2α+1 for the hard ensemble, and η = 4α

2α+1 for the easy
ensemble. In each panel, solid curves correspond to our theoretical predictions for a sample
size n = 4000 and a range of horizons H . (a) Plots comparing exponential decay kernel K3
under the “hard” ensemble to the 1-polynomial decay kernel K2 under the “easy” ensemble.
Theory predicts that the MSE scales as H3 and H1.33 in these two cases respectively; as
shown, these theoretical predictions agree well with the empirical results. (b) Plots comparing
the behavior of the kernel K1 (with 0.6-polynomial decay) under the “hard” ensemble versus
the “easy” ensemble. Theory predicts that the MSE should scale as H2.55 and H1.09 in these
two cases.

Theorem 3.1 provides two finite-sample upper bounds and ranges of regularization to
achieve them. Theorem 3.4 establishes matching minimax lower bounds over two MRP sub-
classes. Section 3.3 provides the results of numerical experiments with synthetic data that
illustrate various qualitative features of our theoretical predictions. Section 4 contains the
proofs of Theorems 3.1 and 3.4, and we conclude with a discussion in Section 5.

Notation. For any event E , we use 1{E} to denote the {0,1}-valued indicator function.
We use C , c, c0 etc. to denote universal constants whose numerical values may vary from
line to line. For a positive integer D, we adopt the shorthand [D] := {1,2, . . . ,D}. Given

a distribution µ, we define the L2(µ)-norm ∥f∥µ :=
√∫

f2µ(dx) for f ∈ L2(µ). We
also define the supremum norm ∥f∥∞ := supx∈X |f(x)|. For two measures p, q with p
absolutely continuous with respect to q, we define the Kullback–Leibler (KL) divergence
DKL(p ∥ q) := Ep

[
log
(dp
dq

)]
, along with the χ2-divergence χ2(p ∥ q) := Eq

[(dp
dq − 1

)2].
2. Background and problem set-up. In this section, we begin by formulating the value

function estimation problem more precisely in Section 2.1. Section 2.2 is devoted to back-
ground on reproducing kernel Hilbert spaces (RKHSs), along with a description of the kernel
least squares temporal difference (LSTD) estimator.

2.1. Problem formulation. A discounted Markov reward process, denoted by I (P, r, γ),
consists of the combination of a Markov chain, a discount factor γ ∈ (0,1), along with a
reward function r. In the infinite-horizon discounted setting studied here, the Markov chain
is homogeneous, defined on a state space X with a transition kernel P :X ×X →R. The
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reward function r :X →R models the reward associated with each given state, and for some
specified discount factor γ ∈ (0,1), our goal is to estimate the expected discount sum of all
future rewards. More precisely, we define the value function V ∗ :X →R via

V ∗(x) := E
[∑∞

h=0γ
h r(Xh) |X0 = x

]
,(1)

where the expectation is taken over a trajectory (x,X1,X2, . . .) from the Markov chain gov-
erned by the transition kernel P . The existence of the value function V ∗ is guaranteed by
mild assumptions such as the boundedness of reward r. For future reference, we note that the
value function V ∗ is the solution to the Bellman fixed point equation

V ∗(x) = r(x) + γ EX′|x [V
∗(X ′) |X = x] for any x ∈ X .(2)

In this paper, we study the problem of estimating the value function V ∗ on the basis of
samples from the Markov chain, when the reward function r and discount factor γ ∈ (0,1)
are given.1 Throughout our discussion, we consider the i.i.d. observation model, where the
dataset consists of n i.i.d. sample pairs {(xi, x′i)}ni=1 ⊂X ×X . We let µ be any stationary
distribution of the Markov chain P . The sample pair (xi, x′i) is generated by

xi ∼ µ, and x′i ∼P(· | xi).(3)

The joint distribution induced by the pair (µ,P) corresponds to the stationary joint distribu-
tion over consecutive state pairs in the Markov chain.

Given an estimate θ̂ of the value function, we measure its error in the squared-L2(µ)-norm

∥θ̂− V ∗∥2µ := EX∼µ

[(
θ̂(X)− V ∗(X)

)2]
,(4)

where µ is the population distribution of samples {xi}ni=1. In simple cases—such as the
tabular setting, in which the state space X is a finite set—policy evaluation is a parametric
problem, since the value function can be encoded as a vector with one entry per state.

Of interest to us in this paper are problems with “richer” state spaces, for which estimating
the value function is more challenging, and often non-parametric in nature. In such settings,
it is standard to seek approximate solutions of the Bellman operator, via the notion of a
projected fixed point (e.g., [6, 32, 48, 58]). Given a convex class of functions G closed in
L2(µ), the projection operator Π : L2(µ)→G is given by

Π(f) := argmin
g∈G

∥g− f∥µ for any function f ∈ L2(µ).(5)

We then seek a solution to the projected fixed point equation

θ∗ =Π
(
T (θ∗)

)
(6)

where T (θ∗)(x) := r(x) + γ EX′|x θ
∗(X ′) is the Bellman operator. Since the Bellman oper-

ator is contractive2 in the L2(µ)-norm and Π is non-expansive, this fixed point equation has a
unique solution. We remark that the function θ∗ defined in equation (6) minimizes the mean
squared projected Bellman error MSPBE(θ) := ∥θ−Π(T (θ))∥2µ.

When the approximating function class G is chosen to be the linear span of fixed features,
then this approach leads to the least-squares temporal difference (LSTD) method. In this
paper, our primary focus is more flexible function classes, as defined by reproducing kernel
Hilbert spaces. Let us now describe this approach.

1As we discuss, our results can be easily extended to the setting with an unknown reward function r; so as to
bring the essential challenges into clear focus, we take it as known for the bulk of our development.

2This fact is a consequence of the choice γ ∈ (0,1) and the non-expansiveness of the transition operator on
L2(µ), due to the stationarity of µ.
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2.2. Kernel least-squares temporal differences. Reproducing kernel Hilbert spaces
(RKHSs) provide a fertile ground for developing non-parametric estimators. In this paper,
we analyze a standard RKHS-based estimate in reinforcement learning, known as the kernel
least-squares estimate, which we now introduce. We begin with some basic background on
reproducing kernel Hilbert spaces; see the books [4, 21, 50] for more details.

An RKHS is a particular type of Hilbert space of real-value functions f with domain
X . As a Hilbert space, the RKHS has an inner product ⟨f, g⟩H along with the associated
norm ∥f∥H. The distinguishing property of an RKHS is the existence of a symmetric kernel
function K : X × X → R that acts as the representer of evaluation. In particular, for each
x ∈ X , the function z 7→ K(z,x) belongs to the Hilbert space, and moreover we have

⟨K(·, x), f⟩H = f(x) for all f ∈H.(7)

In order to simplify notation, in much of our development, we adopt the shorthand
Φx :=K(·, x) for this representer of evaluation.

The population-level kernel LSTD estimate θ∗ is, by definition, equal to the projected fixed
point (6) with G corresponding to the closure of H. Since H is a reproducing kernel Hilbert
space, this fixed point has a more explicit expression in terms of certain operators defined on
the Hilbert space. In particular, the covariance and cross-covariance operators are defined as

Σcov := EX∼µ[ΦX ⊗ΦX ] and Σcr := E(X,X′)∼µ×P [ΦX ⊗ΦX′ ] .(8)

By construction, the covariance operator Σcov(f), when applied to some f ∈ H, has the
property that ⟨g, Σcov(f)⟩H = EX∼µ[g(X)f(X)], with a similar property for the cross-
covariance operator. In terms of these operators, the population-level kernel LSTD fixed point
must satisfy3 the fixed point relation

Σcov θ
∗ =Σcov r+ γ Σcr θ

∗ .(9)

This fixed point relation follows from the convex optimality conditions associated with the
projected fixed point. In particular, the error function

e(x) := θ∗(x)−T (θ∗)(x) = θ∗(x)− r(x)− γEX′|x[θ
∗(X ′)]

must be orthogonal (in L2(µ)) to any element of the Hilbert space. Enforcing orthogonality
with respect to ΦX and re-arranging leads to the condition (9). We also note that in the special
case of linear kernel, equation (9) defines the population version of the least-squares temporal
difference (LSTD) estimate; see the book by Sutton and Barto [46] for the derivation of the
relation (9) in this special case.

Of more interest to us in this paper is the estimate defined by a richer class of kernel
functions. The population-level estimate θ∗ depends on the unknown operators Σcov and
Σcr. In order to obtain an estimator, we need to replace these unknown quantities with data-
dependent versions. In this paper, we analyze the regularized kernel LSTD estimate θ̂ given
by the solution to the equation(

Σ̂cov + λnI
)
θ̂ =

(
Σ̂cov + λnI

)
r+ γ Σ̂cr θ̂.(10)

where λn > 0 is a user-defined regularization parameter, I is the identity operator on the
Hilbert space, and we have defined the empirical operators

Σ̂cov :=
1

n

n∑
i=1

Φxi
⊗Φxi

, and Σ̂cr :=
1

n

n∑
i=1

Φxi
⊗Φx′

i
.

3In writing this equation, we have assumed that the reward function r belongs to the Hilbert space; if not, it
should be replaced by the projection Π(r).
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Note that equation (10) is a fixed point equation in the (possibly infinite-dimensional) Hilbert
space. However, as a consequence of the representer theorem [27], this fixed point rela-
tion can be formulated as an n-dimensional linear system involving kernel matrices. See
Lemma E.1 in Appendix E.1 of the supplementary material for this computationally efficient
representation, which we use in our experiments. When the RKHS H has a finite dimension
d, we can also reduce equation (10) to a d-dimensional linear system and solve it efficiently.

Consider the empirical estimate θ̂ as an estimate of the unknown value function V ∗. The
error ∥θ̂− V ∗∥µ can be upper bounded as

∥θ̂− V ∗∥µ ≤ ∥θ̂− θ∗∥µ︸ ︷︷ ︸
Estimation error

+ ∥θ∗ − V ∗∥µ︸ ︷︷ ︸
Approximation error

.(11)

The approximation error in this decomposition has been studied in past work, and there are
various ways to bound it (e.g., [6, 48]); see the papers [32, 58] for some refined and optimal
results.

In this paper, our main interest is to study the statistical estimation error ∥θ̂− θ∗∥µ, and to
characterize its behavior as a function of sample size and structural properties of the MRP and
RKHS. The eigenvalues of the kernel integral operator play an important role here; in par-
ticular, under relatively mild conditions (required to satisfy Mercer’s theorem, and assumed
here), the kernel function admits a decomposition of the form

K(x, z) =

∞∑
j=1

µjϕj(x)ϕj(z),(12)

where {µj}∞j=1 are a non-negative sequence of eigenvalues, and {ϕj}∞j=1 are the kernel eigen-
functions, orthonormal in L2(µ). As we show, the statistical estimation error is controlled by
a kernel complexity function that depends on the rate at which the eigenvalues decay.

3. Main results. We now turn to the statement of our main results, along with some dis-
cussion of their consequences. Section 3.1 is devoted to upper bounds on the L2(µ)-error of
the kernel LSTD estimator, whereas Section 3.4 provides minimax lower bounds, applicable
to any estimator.

3.1. Non-asymptotic upper bounds on kernel LSTD. Our first main result provides a non-
asymptotic upper bound on the L2(µ)-error of the kernel LSTD estimator. We begin by stat-
ing the assumptions under which this upper bound holds. First, we assume that the kernel
function is uniformly bounded, in the sense that

sup
x∈X

√
K(x,x)≤ b(13)

for some finite constant b. Note that any continuous kernel function over a compact domain
X satisfies this condition; moreover, even on unbounded domains, various standard kernels
(e.g., Gaussian, Laplacian etc.) satisfy this condition.

In addition, one of our results—namely, a so-called “fast rate”—requires a bound on the
sup-norm of the kernel eigenfunctions {ϕj}∞j=1: that is, we assume that

max
j≥1

∥ϕj∥∞ ≤ κ for some finite quantity κ.(14)

For example, any convolutional kernel has eigenfunctions given by the Fourier basis, and
so satisfies this condition. In the examples that follow the theorem, we provide additional
examples of kernels that have bounded eigenfunctions.
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Central to our analysis is a certain inequality, one that arises from a localized analysis
of the empirical process defined by the kernel class. For static prediction problems—that is,
problems that lack the dynamic evolution of the RL setting—the idea of localization is well-
known to be necessary in order to obtain bounds on the estimation error (e.g., [49]); we also
refer the reader to Chapters 13 and 14 in the book [50] for additional background, including
specifics on kernel ridge regression (§13.4.2). Our use of localization here identifies very
clearly how the structural properties of the Markov reward process determine the statistical
accuracy of the estimate. In particular, the key ingredients in this analysis are the following:

Kernel and stationary distribution: The kernel function K interacts with the MRP’s stationary
distribution µ so as to determine the eigenvalues {µj}∞j=1 of the kernel-integral operator.

Effective horizon: The discount factor γ ∈ (0,1) enters via the effective horizon H := 1
1−γ .

Structural properties of fixed point: The structural properties of the projected fixed point θ∗

are captured by a user-defined radius R such that

R≥max
{
∥θ∗ − r∥H, 2∥θ

∗∥∞
b

}
.(15)

Bellman residual variance: Playing the role of the noise level is the variance of the Bellman
residual error, when evaluated at θ∗. It is given by

σ2(θ∗) := E
[(
θ∗(X)− r(X)− γθ∗(X ′)

)2]
,(16)

where (X,X ′) are successive samples from the Markov chain, with the starting state X
drawn according to the stationary distribution.

Our analysis differs from that of a static non-parametric regression problem (special case of
γ = 0) in several important ways. First, the effective horizon H = (1− γ)−1 plays no role in
the static setting, and the Bellman residual variance is a more complex object than a typical
observation noise variance, since it involves the dynamics defined by the fixed point θ∗.

3.1.1. Kernel-based critical inequality. We now turn to the critical inequality that de-
termines the estimation error of the kernel LSTD estimate. It is an inequality that involves
the kernel eigenvalues {µj}∞j=1, the radius R, and the discount γ via the effective horizon
H(γ) = (1− γ)−1. More precisely, we consider positive solutions δ > 0 to the ζ-based crit-
ical inequality

C(δ) :=

√√√√ ∞∑
j=1

min
{µj

δ2
,1
}
≤

√
n R

H(γ) ζ︸ ︷︷ ︸
Slope (SNR)

δ ,(CI(ζ))

where ζ > 0 is a parameter to be specified. Note that the function on the left-hand side is
decreasing in δ, whereas the right-hand side is linear in δ with the indicated slope. Con-
sequently, inequality (CI(ζ)) has a unique smallest positive solution, which we denote by
δn(ζ). To be clear, in addition to depending on the sample size n and ζ , this smallest posi-
tive solution also depends on the eigenvalues as well as the pair (R,γ), but we suppress this
dependence so as to simplify notation.

To be clear, the relevance of the kernel complexity function C on the left-hand side (CI(ζ))
is well-known from past work on kernel ridge regression; in particular, it arises from an anal-
ysis of the local Rademacher complexity of a kernel class (e.g., [30, 50]). Equally important
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understanding kernel-based LSTD methods—and what is novel in our analysis—is the de-
pendence on the structural parameters on the right-hand of the critical inequality; as our
results show, these choices capture precisely how the statistical estimation error of kernel
LSTD methods depends on various aspects of the problem structure, including the effective
horizon and the Bellman residual variance.

Since the critical inequality (CI(ζ)) plays a central role in our analysis, it is worth gaining
intuition for how different components of the MRP affect the solution δn(ζ). Panel (a) in
Figure 2 illustrates the basic geometry of the critical inequality. One instance of the kernel
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Fig 2. Illustrations of the structure of the critical inequality (CI(ζ)). (a) Plots of the kernel
complexity δ → C(δ) on the left-hand side, along with the linear function on the right-hand
side. The critical δ∗ = δn(ζ) is found at the intersection of this curve and line as marked in a
blue star. (b) Effects of changing the slope of the right-hand side line, which corresponds to a
type of signal-to-noise ratio (SNR). As the SNR decreases, leading to a harder problem, the
critical δ∗ shifts rightwards to larger values.

complexity function δ 7→ C(δ), obtained from a kernel with 1-polynomial decaying eigen-
values (see equation (22) in the sequel), is plotted in black. Note that this function is mono-
tonically decreasing in δ. The dotted blue line corresponds to the right-hand side, obtained
for a particular value of the slope parameter. The critical radius δ∗ ≡ δn(ζ), obtained at the
intersection of the kernel complexity of this line, is marked with a star.

The slope on the right-hand side of the inequality (CI(ζ)) corresponds to a type of signal-
to-noise ratio (SNR). Panel (b) in Figure 2 shows the effect of changing this SNR parameter.
As the SNR decreases—so that the slope decreases—the fixed point δ∗ shifts rightward to
larger values. One consequence of our analysis is that we are able to show precisely the rate
at which these leftward and rightward shifts in the statistical estimation error occur, as a
function of the MRP’s structural parameters (in addition to the sample size n).

3.1.2. Non-asymptotic upper bounds. With this set-up and intuition in place, let us now
turn to the statement of our non-asymptotic upper bounds on the quality of the kernel LSTD
estimate. We provide two guarantees, both of which involve solutions to the the critical in-
equality CI(ζ) but with different choices of ζ . In each case, the tightest bound is afforded by
δn(ζ). We make two different choices of ζ . First, we establish a bound, one that holds for
all sample sizes, with the choice ζ = bR. We then prove a sharper result, one that holds for
a finite sample size that is suitably lower bounded, and involves setting ζ = κσ(θ∗), where
σ2(θ∗) is the variance of the Bellman residual error (16).
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Both parts of our theorem guarantee that the kernel LSTD estimator satisfies a bound of
the form

∥θ̂− θ∗∥2µ ≤ c1R
2

{
δ2 +

λn

1− γ

}
(17)

with probability at least 1 − 2exp
(
− c2nδ2(1−γ)2

b2

)
, where (c1, c2) are universal constants.

The two parts differ in the allowable settings of δ and λn for which the bound (17) holds.

THEOREM 3.1 (Non-asymptotic upper bounds). There is a universal constant c0 such
that:

(a) Slow rate: Under the kernel boundedness condition (13), the bound (17) holds for any
solution δ = δ(n,R,γ, b) to the critical inequality CI(bR) and any λn ≥ c0δ

2(1− γ).
(b) Fast rate: Suppose in addition that the kernel eigenfunctions are uniformly bounded (14).

Let δn(κσ(θ∗)) be the smallest solution to the critical inequality CI(κσ(θ∗)), and suppose
that n is large enough to ensure that

R2δ2n(κσ(θ
∗))≤ c

κσ2(θ∗)

(1− γ)
√
n
.(18)

Then the bound (17) holds for any solution δ = δ(n,R,γ,σ(θ∗)) to the critical inequality
CI(κσ(θ∗)) and any λn ≥ c0δ

2(1− γ).

The proof of Theorem 3.1, given in Section 4.1, involves first proving a “basic inequality”
that is satisfied by the error θ̂ − θ∗. We then use empirical process theory and concentration
inequalities to establish high probability bounds on the terms in this basic inequality.

It is also interesting to compare the regimes in which the fast and slow rates from our
theory apply. See Appendix B in the supplementary material for an in-depth discussion of
these regimes.

3.2. A simpler bound and some corollaries. It should be noted that the bounds in Theo-
rem 3.1 hold if we set δ = δn, corresponding to the smallest positive solution to the critical
inequality CI(ζ), along with λn = c0(1− γ)δ2n. We are then guaranteed to have

∥θ̂− θ∗∥2µ ≤ c1(1 + c0)︸ ︷︷ ︸
:=c′

R2δ2n(19)

with probability at least 1− 2exp
(
− c2nδ2n(1−γ)2

b2

)
. Let us consider some examples of this

simpler upper bound to illustrate.

3.2.1. Linear kernels and standard LSTD. We begin by considering the special case of
a linear kernel, in which case the kernel LSTD estimate reduces to the classical linear LSTD
estimate. Given a d-dimensional feature map of the form φ : X → Rd, let us consider linear
value functions θ(x) := ⟨θ, φ(x)⟩ =

∑d
j=1 θjφj(x). Here we have overloaded the notation

in letting θ ∈Rd denote a parameter vector. Similarly, we write the reward function as r(x) =
⟨r, φ(x)⟩ for some vector r ∈Rd.

In this case, the Hilbert space can be identified with Rd equipped with the Euclidean
inner product as the Hilbert inner product, and the vector φ(x) ∈ Rd plays the role
of the representer of evaluation. Note that we have ∥θ∗ − r∥H = ∥θ∗ − r∥2, and since
K(x, y) = ⟨φ(x), φ(y)⟩, the covariance operator takes the form Σcov = E

[
φ(X)φ(X)⊤

]
=



12∑d
j=1 µjvjv

⊤
j , a d-dimensional symmetric positive semidefinite matrix with eigenvalues

{µj}dj=1, and eigenvectors {vj}dj=1. 4 We have K(x, y) = ⟨φ(x), φ(y)⟩, and so

b= sup
x∈X

√
K(x,x) =max

x
∥φ(x)∥2 and κ= sup

x∈X
max
j≥1

|⟨vj , φ(x)⟩|/
√
µj .

We now study the structure of the critical inequality CI(ζ), and derive two bounds for the
standard LSTD estimate. Both bounds are of the form

∥θ̂− θ∗∥2µ = E
[
⟨θ̂− θ∗, φ(X)⟩2

]
≤ ε2(ζ) := c′

ζ2

(1− γ)2
d

n
(20)

for different choices of ζ , and hold with probability at least 1− 2exp
(
− c2nε2(ζ)(1−γ)2

b2R2

)
. We

summarize as follows:

COROLLARY 3.2 (Linear kernels and standard LSTD). For the linear kernel and associ-
ated standard LSTD estimate:

(a) For any sample size n, the bound (20) holds with

ε2(bR) = c′
b2R2

(1− γ)2
d

n
.(21a)

(b) For a sample size lower bounded as
√
n≥ 200κd

1−γ , the bound (20) holds with

ε2
(
κσ(θ∗)

)
= c′

κ2σ2(θ∗)

(1− γ)2
d

n
.(21b)

PROOF. For any δ > 0, we have
∑d

j=1min
{µj

δ2 ,1
}
≤ d. Consequently, the critical in-

equality CI(ζ) is satisfied as long as
√
d≤

√
nR (1−γ)

ζ δ. The smallest δ = δ(ζ) is given by

R2δ2(ζ) =
ζ2

(1− γ)2
d

n
.

Setting ζ = bR yields the claim (21a).
As for the faster rate claimed in the bound (21b), we need to check when the requirement

of Theorem 3.1(b)—in particular the sample size condition (18)—is satisfied. In this case,
we have R2δ2n(κσ(θ

∗))≤ κ2σ2(θ∗)
(1−γ)2

d
n , so that in order to satisfy the bound (18), it suffices to

have
√
n≥ 200κd

1−γ . The claim (21b) then follows.

3.2.2. Kernels with α-polynomial decay. Let us now consider a “richer” class of kernel
functions, for which the kernel estimator is truly non-parametric. In particular, let us consider
the class of kernels that satisfy the α-polynomial decay condition

µj ≤ c j−2α for some exponent α> 1
2 .(22)

There are many examples of kernels used in practice that satisfy a decay condition of this
form, including the Laplacian kernel K(x,x′) = exp(−∥x−x′∥1), as well as various types of
Sobolev and spline kernels that are used in non-parametric regression and density estimation.
See Chapters 12 and 13 in the book [50] for more details on such kernels.

4The j-th eigenfunction of kernel K takes the form ϕj(x) := ⟨vj , φ(x)⟩/
√
µj , which satisfies ∥ϕj∥µ = 1.
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Let us study the structure of the critical inequality CI(ζ) for kernels whose eigenvalues
satisfy the α-polynomial decay condition (22). We derive two bounds, both of which are of
the form

∥θ̂− θ∗∥2µ ≤ ε2(ζ) :=R2 c′
( ζ2

R2(1− γ)2
1

n

) 2α
2α+1

︸ ︷︷ ︸
δ2(ζ)

= c′R
2

2α+1

( ζ2

(1− γ)2
1

n

) 2α
2α+1

,(23)

for different choices of ζ , and hold with probability at least 1− 2exp
(
− c2nδ2(ζ)(1−γ)2

b2

)
.

COROLLARY 3.3. (a) For any sample size n, the bound (23) holds with

ε2(bR) = c′R2
( b2

(1− γ)2
1

n

) 2α
2α+1

.(24a)

(b) Suppose that the sample size n is large enough to ensure that R2δ2n(σ(θ
∗))≤ c κσ2(θ∗)

(1−γ)
√
n

.
Then the bound (23) holds with

ε2
(
κσ(θ∗)

)
= c′R2

( κ2σ2(θ∗)

R2(1− γ)2
1

n

) 2α
2α+1

.(24b)

PROOF. Let us find a solution to the critical inequality CI(ζ) for a kernel satisfying the α-
polynomial decay condition (22). Let k be the largest positive integer such that δ2 ≤ ck−2α.
With this choice, we have√√√√ ∞∑

j=1

min
{µj

δ2
,1
}
≤

√√√√k+
c

δ2

∞∑
j=k+1

j−2α.

Now we have
∞∑

j=k+1

j−2α ≤
∫ ∞

k
t−2αdt ≤ 1

2α− 1
(1/k)2α−1.

Consequently, there is a universal constant c′, depending only on α, such that the critical

inequality CI(ζ) will be satisfied for a δ > 0 such that c′δ−
1
2α ≤

√
n R(1−γ)

ζ δ. Solving this
inequality yields that

δ2 ≍
( ζ2

R2(1− γ)2
1

n

) 2α
2α+1(25)

satisfies the critical inequality CI(ζ).
Putting together the pieces, we conclude that there is a universal constant c such that

∥θ̂− θ∗∥2µ ≤ cR2
( ζ2

R2(1− γ)2
1

n

) 2α
2α+1

= cR
2

2α+1

( ζ2

(1− γ)2
1

n

) 2α
2α+1(26)

with high probability. This bound holds with ζ = bR for all sample sizes, and it holds with
ζ = κσ(θ∗) once the sample size is sufficiently large to ensure that

R2δ2n(κσ(θ
∗))≍R

2

2α+1

(κ2σ2(θ∗)

(1− γ)2
1

n

) 2α
2α+1 ≲

κσ2(θ∗)

(1− γ)
√
n
.

Since 2α
2α+1 >

1
2 , this bound will hold once n exceeds a finite threshold.
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Connection to effective dimension: In order to gain intuition for our theoretical results, it
can be helpful to consider a notion of effective dimension. Given a solution δn to the critical
inequality, let us define

dn ≡ dn(δn) := max
{
j | µj ≥ δ2n

}
.(27)

This notion of effective dimension corresponds to the number of eigenvalues above the
squared error level δ2n returned by our critical inequality. As a concrete illustration, suppose
that the kernel has eigenvalues decaying µj ≍ j−2α. In ths special case, the calculations from
equations (25) and (26) imply that

dn ≍
(√nR(1− γ)

ζ

) 2
2α+1 and ∥θ̂− θ∗∥2µ ≲

ζ2

(1− γ)2
dn
n

.(28)

Thus, when reformulated in terms of effective dimension, our bounds on the estimation error
∥θ̂ − θ∗∥2µ now take a form similar to inequality (20) in the linear kernel example, except
that we replace the dimension d of linear kernel with the effective dimension dn from equa-
tion (28).

It should be observed that—via its dependence on the critical error δn—the effective di-
mension dn is affected by several structural properties of the problem. In particular, we ob-
serve:

• For non-parametric problems, the effective dimension dn grows as the sample size n in-
creases, so the squared error ∥θ̂ − θ∗∥2µ decays more slowly than the classical parametric
rate n−1.

• For sufficiently regular problems, the term R(1 − γ)/ζ gets smaller as we increase the
effective horizon H = (1− γ)−1. It shows that the effective dimension dn shrinks as hori-
zon H grows, so as to maintain a simple model and stabilize the estimation. In this way,
for a non-parametric problem, the overall dependence of error ∥θ̂ − θ∗∥2µ on the effective
horizon H is always milder than that of the linear kernel, for which it grows cubically (as
H3) [19]. This highlights an interesting distinction between parametric and non-parametric
procedures in policy evaluation that does not seem to have been appreciated to date.

3.3. Some illustrative simulations. Some simulations are useful in illustrating the pre-
dictions of our theory, and most concretely the sharpness of Corollary 3.3. In particular, from
the bound (23), the error depends on the eigenvalue exponent α from equation (22) in two
distinct ways. On one hand, the dependence on the effective horizon H = 1

1−γ worsens as the
exponent α increases. On the other hand, the dependence on the inverse sample size (1/n)—
corresponding to how quickly the estimation error vanishes—improves as α increases. Corol-
lary 3.3 makes very explicit predictions about these dependencies, and the sharpness of these
predictions can be verified empirically.

In order to do so, we constructed three different kernels Ki, i = 1,2,3 with eigenvalues
{µj}∞j=1 decaying as

µj(Ki) =


j−6/5 for i= 1

j−2 for i= 2

exp
(
− (j − 1)2

)
for i= 3.

(29)

Note that K1 has α-polynomial decay (22) with α= 3/5, K2 with α= 1, and the exponential
decay of K3 can be viewed as a limiting case α=+∞.

In parallel, we constructed two different probability transition functions that allowed us
to vary the dependence of the radius R and the Bellman residual variance σ2(θ∗) on the
effective horizon.
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“Hard” ensemble : The transition function underlying our hard ensemble is constructed so
that

R≍ σ2(θ∗)≍ 1

1− γ
,

where the notation ≍ means bounded above and below by constants independent of γ.
“Easy” ensemble: For our easy ensemble, we construct the probability transition matrix and

rewards so that both R and σ2(θ∗) remain of constant order as γ is varied.

See Appendix A of the supplementary material for more details on these constructions. In all
cases, we implemented the kernel LSTD estimate using the regularization parameter λn =
c(1− γ)δ2n for a fixed constant c= 0.01.

3.3.1. Dependence on sample size. We begin by commenting the dependence of the ker-
nel LSTD estimator on the sample size, ensuring that our guarantees are consistent with
known results. For any kernel with α-polynomial decay (22), Corollary 3.3 predicts that the
mean-squared error should decay as

∥θ̂− θ∗∥2µ ≍
(
1

n

) 2α
2α+1

,(30)

where, for this particular comparison, we disregard other terms that are independent of the
sample size n. This decay rate is a standard one in the context of non-parametric regres-
sion [44, 50], so to be expected here as well.

The novelty in our analysis lies in the characterization of the other structural parameters, to
which we now turn.
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Fig 3. Plots of the mean-square error E∥θ̂ − θ∗∥2µ versus the sample size n for two different
kernels. For each point (for each curve on each plot), the MSE was approximated by taking a
Monte Carlo average over T = 2000 trials with the sample standard deviations shown as error
bars. Our theory predicts that the mean-squared error should drop off as

(
1
n

)ν for an exponent
ν > 0 determined by the kernel. Solid curves correspond to these theoretical predictions. We
fixed discount factor γ = 0.6. (a) MSE versus sample size on ordinary scale. Our theory pre-
dicts that (disregarding logarithmic factors), the MSE should scale as

(
1
n

)
for the exponential

kernel K3, and as
(
1
n

)2/3 for the 1-polynomial decaying kernel K2. Note that these theoretical
predictions align very well with the empirical behavior. (b) Plots of the same data on a log-log
scale, showing the expected linear relationship between log MSE and log sample size.
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3.3.2. Dependence on effective horizon. In our second simulation study, we examine the
behavior of the L2(µ)-error as a function of the effective horizon H := 1

1−γ . For kernels with
eigenvalues that exhibit α-polynomial decay, our theory—in particular via the bound (24b)
from Corollary 3.3—gives specific predictions about this dependence as well.

• With the probability transitions from the “hard” ensemble, it can be shown that R ≍
σ2(θ∗) ≍ H = 1

1−γ . As a consequence, our theory predicts that for a fixed sample size
n, we should observe the following scaling

∥θ̂− θ∗∥2µ ≍H
2(3α+1)

2α+1 .(31a)

• With the probability transitions from our “easy” ensemble, for which R≍ σ2(θ∗)≍ 1, the
predicted slope of this linear scaling is

∥θ̂− θ∗∥2µ ≍H
4α

2α+1 .(31b)

See Appendix A of the supplementary material for the calculations of both of these theoretical
predictions. Note that predictions for the kernel K3, with its exponentially decaying values,
can be obtained as a limiting case with α→+∞.

3.4. Minimax lower bounds. Thus far, we have established some upper bounds on the
performance of a specific estimator. To what extent are these bounds improvable? In order
to answer this question, it is natural to investigate the fundamental (statistical) limitations of
kernel-based value function estimation. In this section, we do so by deriving some minimax
lower bounds on the behavior of any procedures for estimating the value function.

Minimax lower bounds are obtained by assessing the performance of any estimator in a
uniform sense over a particular class of problems. In particular, for classes of MRPs M to
be defined, we prove lower bounds of the following type. For a given MRP instance I , we
assume that we observe a dataset {(xi, x′i)}ni=1 of n i.i.d. samples generated from the given
MRP. An estimator θ̂ of the value function is any measurable function of the data mapping
into RX . For suitable classes M indexed by pairs of parameters (R̄, σ̄), we prove that the
squared-L2(µ) error of any estimator, when measured in a uniform sense over the family, is
lower bounded as c1R̄

2δ2n. Here c1 > 0 is a universal constant, and the error parameter δn
critical inequality (CI(ζ)) that specifies our upper bounds; see equation (33) for the precise
definition.

3.4.1. Families of MRPs and regular kernels. We begin by describing the families of
MRPs over which we prove minimax lower bounds. In all of our constructions, both the
reward function r and the optimal value function θ∗ are members of a Hilbert space with a
set of eigenfunctions {ϕj}∞j=1, and a sequence of eigenvalues {µj}∞j=1 that vary as part of the
construction. In all cases, our construction ensures that the eigenfunction bound (14) holds
with κ= 2, along with the kernel being trace class. In particular, we have

max
j≥1

∥ϕj∥∞ ≤ κ= 2, and
∞∑
j=1

µj ≤ b2

4 .(32a)

Note that these conditions imply that

sup
x∈X

√
K(x,x) = sup

x∈X

( ∞∑
j=1

µjϕ
2
j (x)

)1/2
≤ b,
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so that the b-boundedness condition (13) from our upper bound holds. In addition, our fami-
lies of MRPs are also defined by the constraints

max
{
∥θ∗ − r∥H, 2∥θ

∗∥∞
b

}
≤ R̄, and σ(θ∗)≤ σ̄.(32b)

We say that a family M of MRPs is (R̄, σ̄)-valid if its members satisfy the bound (32b), along
with the conditions (32a).

So as to match our upper bounds, we prove lower bounds that involve an error term δn
defined as the smallest positive solution to the inequality√√√√ ∞∑

j=1

min
{µj

δ2
,1
}
≤
√
n
R̄ (1− γ)

2σ̄
δ.(33)

From past work on kernel ridge regression [54], it is known that such lower bounds cannot
hold for kernels with eigenvalues that decay in pathological ways. The notion of a regular
kernel, which we define here, precludes such pathology. For a given δn, the associated statis-
tical dimension dn ≡ dn(δn) is given by dn(δn) := max

{
j | µj ≥ δ2n

}
. The kernel is regular

if there is a universal constant c such that{ 2σ̄

R̄ (1− γ)

}2
dn ≥ c nδ2n.(34)

Standard kernels, including the linear kernel and more general kernels with eigenvalues that
decay at a polynomial or exponential rate, are all regular.

3.4.2. Statement of bounds. With this set-up, we are now ready to state our minimax
lower bounds. For a given (R̄, σ̄)-valid family of MRPs, we say that the lower bound
LB(R̄, σ̄, δn) holds if

inf
θ̂

sup
I∈M(R̄,σ̄)

PI

(
∥θ̂− θ∗∥2µ ≥ c1 R̄

2δ2n

)
≥ c2.(LB(R̄, σ̄, δn))

In this statement, the quantities (c1, c2) are universal constants.
We prove minimax lower bounds in two regimes of parameters (R̄, σ̄), depending on how

these parameters scale with the effective horizon 1
1−γ . In Regime A, this scaling is linear in

the effective horizon—namely

R̄≥ 1
6(1−γ) max

{ γ√
µ1
, 2b
}
, and σ̄2 ∈

[
1+γ

5(1−γ) ,
1+γ
1−γ

]
.(35a)

In Regime B, by contrast, both of these quantities can be order one with the effective
horizon—viz.

R̄≥max
{

1
2
√
µ1
, 2
γb

}
, and σ̄2 ∈

(
1
8 ,1].(35b)

We discuss the motivation for considering these two regimes following the statement of our
bounds.

THEOREM 3.4 (Minimax lower bounds). (a) For any pair (R̄, σ̄) in Regime A (35a),
there is a (R̄, σ̄)-valid family of MRPs such that the lower bound LB(R̄, σ̄, δn) holds
for any sample size n such that

R̄2δ2n ≤ 2 κσ̄2

(1− γ)
3

2

√
n
.(36a)
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(b) Consider any pair (σ̄, R̄) in Regime B (35b), and suppose that the eigensequence satisfies
min3≤j≤dn

{√
µj−1 −

√
µj

}
≥ δn

2dn
. Then there is a (R̄, σ̄)-valid family of MRPs such that

the lower bound LB(R̄, σ̄, δn) holds for a sample size n large enough such that

R̄2δ2n ≤ 12 κσ̄2

(1− γ)
√
n

and R̄δn ≤ 10κσ̄
(
1− µ2

µ1

)
min

{ κσ̄/(
√
µ1R̄)

(1− γ)2 logn
,

√
µ1

b

}
.

(36b)

See Section 4.2 for the proof of Theorem 3.4.

The main take-away from this result is the following: by comparing the bounds in Theo-
rem 3.4 with the achievable rate from Theorem 3.1(b), we see that the kernel LSTD estimator
is an optimal procedure. More precisely, it achieves the minimax-optimal scaling R̄2δ2n of the
squared-L2(µ) norm. As we discuss below, there are some differences in the minimum sam-
ple size required for the bounds to be valid, with the lower bound requirements being less
stringent than our upper bounds from Theorem 3.1.

A few high-level comments on the proof: it makes use of the Fano method, a well-known
approach for proving minimax lower bounds (e.g., [50, 57]). This method involves construct-
ing a family of MRP instances that are “well-separated”, and arguing that any method with
relatively low estimation error is capable of solving a multi-way testing problem defined over
this family. For static estimation problems, including non-parametric regression and density
estimation, it is well understood how to construct such families (e.g., [22, 44]). The nov-
elty and technical challenges in our analysis lie in the construction of such difficult families
for MRPs; doing so requires negotiating the interplay between the kernel structure and the
Markovian dynamics. In our construction, we begin by setting up a “difficult” ensemble of
MRPs with a (discrete) 2-point state space. We then use a tensorization approach, along with
the Walsh basis, to embed many copies of this 2-state MRP into a non-parametric problem
with state space X = [0,1). By also defining the kernels using the Walsh basis, we retain
complete control over the eigenvalues, so that we can establish the claimed lower bounds.

Some differences. Our upper and lower bounds differ in terms of their required lower bounds
on sample size; as we discuss in Appendix D.1 of the supplementary material, the require-
ments of the lower bounds in Theorem 3.4 are milder than our corresponding condition for
the kernel LSTD estimate. Apart from the sample size conditions, Theorem 3.4 also requires
the kernel regularity condition (34), along with the eigensequence condition in part (b). As
we discuss in more detail in Appendix D.1 of the supplementary material, these conditions
are relatively mild, and satisfied by various kernels used in practice (including any kernel
with eigenvalues that exhibit α-polynomial decay (22)).

Regimes of (R̄, σ̄). Let us now discuss the two regimes of parameters.
• The scalings in Regime A (35a) arise naturally when we assume only that the reward

function is uniformly bounded—say ∥r∥∞ ≤ 1. In this case, by the law of total vari-
ance [43], we have the bound σ2(θ∗) ≤ 2

1−γ , and there exist MRPs for which this
(1 − γ)−1 is achieved, consistent with the first inclusion in condition (35a). In terms
of the choice of R̄, we can construct MRPs with bounded reward functions such that
∥θ∗ − r∥µ ≲ 1

1−γ and ∥θ∗∥∞ ≲ 1
1−γ . With these scalings, the constraint on R̄ in condi-

tion (35a) is satisfied.
• Turning to Regime B (35b), it corresponds to a class of problems for which estima-

tion is much easier. Instances with this scaling arise when we impose a constraint of
the form ∥θ∗∥µ ≤ 1. This constraint ensures that σ2(θ∗) ≤ 1 because the variance is
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dominated by the second moment. As for the parameter R̄, the RKHS norm is con-
nected with the L2(µ)-norm via inequality ∥θ∗ − r∥H ≥ 1√

µ1
∥θ∗ − r∥µ. Therefore,

we can ensure that the constraint R̄ ≥ max
{
∥θ∗ − r∥H, 2∥θ

∗∥∞
b

}
holds by construct-

ing MRPs with ∥θ∗ − r∥µ ≲ 1 and ∥θ∗∥∞ ≲ 1
γ . With these choices, we can ensure that

R̄≳max
{

1√
µ1
, 1
γb

}
, as required in the definition (35b).

4. Proofs. We now turn to the proofs of our main results. Section 4.1 is devoted to
overviews of the proofs of the upper bounds stated in Theorem 3.1, whereas Section 4.2
contains the proofs of the lower bounds stated in Theorem 3.4. In this main body, given
space constraints, we focus on providing the higher level road map to the proof structure, and
defer the technically more challenging aspects of the proofs to the supplementary material.

4.1. Proof overview for Theorem 3.1. In this section, we provide an overview of the
proof of the finite-sample upper bounds stated in Theorem 3.1. Our proof consists of three
main steps. First, we use the definition of the estimator to derive a basic inequality to give an
upper bound on the the squared L2(µ) error. Then we use techniques from empirical process
theory and concentration of measure to upper bound the terms on the right-hand side of this
inequality. Finally, we exploit this analysis to choose the regularization parameter λn in a
manner that yields an optimal trade-off between the bias and variance terms.

4.1.1. The building blocks. Recall that θ̂ denotes our estimate, whereas θ∗ denotes the
population-level kernel LSTD solution. We begin our analysis by deriving an inequality that
must be satisfied by the the error ∆̂ = θ̂− θ∗. We state our results in terms of the functional

ρ(f) :=
(
E[f2(X)− γf(X)f(X ′)]

)1/2
,(37)

where (X,X ′) are successive states sampled from the Markov chain, with X drawn accord-
ing to the stationary distribution. As shown in the proof of Theorem 4.1 below, it follows
from the Cauchy-Schwarz inequality that we always have the lower bound

E[f2(X)− γf(X)f(X ′)]≥ (1− γ)∥f∥2µ ≥ 0.(38)

so that our definition of ρ is meaningful.

A basic inequality on the error. We begin by stating an inequality that must be satisfied by
the error. It lies at the foundation of our analysis:

LEMMA 4.1 (Basic inequality). The error ∆̂ = θ̂− θ∗ satisfies the inequality

(1− γ)∥∆̂∥2µ
(i)

≤ ρ2(∆̂)
(ii)
=
{ 3∑

j=1

Tj

}
− λn∥∆̂∥2H,(39)

where

T1 =
〈
∆̂, Σ̂cov(r− θ∗) + γΣ̂crθ

∗〉
H
,(40a)

T2 =λn

〈
∆̂, r− θ∗

〉
H
,(40b)

T3 =
〈
∆̂, (Γ− Γ̂)∆̂

〉
H
,(40c)

where Γ=Σcov − γΣcr and Γ̂ = Σ̂cov − γΣ̂cr.

See Appendix C.1 of the supplementary material for the proof of this claim. This proof is
relatively straightforward, based on exploiting the conditions that define the population and
empirical projected fixed points.
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Controlling the terms. Our next step is to derive upper bounds on the three terms on the
right-hand side of our basic inequality (39). Recall that ∥θ∗ − r∥H ≤R by assumption.

The quantity T2 is easily handled: we have

T2

(i)

≤ λn∥∆̂∥H∥r− θ∗∥H
(ii)

≤ λn

2

{
∥∆̂∥2H +R2

}
,(41)

where step (i) follows from the Cauchy-Schwarz inequality, and step (ii) follows from the
Fenchel-Young inequality.

As for the terms T1 and T3, we state some auxiliary lemmas that bound them with high
probability.

LEMMA 4.2. Let δn = δn(ζ) for either ζ = bR or ζ = κσ(θ∗). There are are universal
constants (c, c′) such that

T1 ≤ c (1− γ) δ2n

{
∥∆̂∥2H +R2

}
+ cR (1− γ) δn∥∆̂∥µ(42)

with probability at least 1− exp
(
− c′ nδ

2
n(1−γ)2

b2

)
.

See Appendix C.2 of the supplementary material for the proof of this claim. This proof in-
volves more technical effort: a reformulation in terms of the supremum of a certain empirical
process, followed by a localization step so as to obtain the sharp rates given here.

LEMMA 4.3. (a) With the choice δn = δn(bR) there are universal constants (c, c′) such
that

T3 ≤ c (1− γ) δ2n

{
∥∆̂∥2H +R2

}
+

ρ2(∆̂)

2
,(43)

with probability at least 1− exp
(
− c′ nδ

2
n(1−γ)
b2

)
.

(b) If, in addition, the sample size condition (18) holds, then the same bound holds with
δn = δn(κσ(θ

∗)).

The proof of this claim is given in Appendix C.3 of the supplementary material. It is the most
technically challenging of the three, making use of localization involving both functional
ρ(f) from equation (37) and the Hilbert norm. As shown in this proof, establishing the bounds
in Lemma 4.3 amounts to proving a non-asymptotic bound on the supremum of an empirical
process involving functions of the form g(x,x′) = f2(x) − γf(x)f(x′), uniformly over a
suitable class of functions f .

4.1.2. Putting together the pieces. We now put together the pieces in order to complete
the proof of Theorem 3.1. In particular, we use Theorems 4.2 and 4.3 to bound the terms
{Tj}3j=1 on the right hand side of the bound (39) from Theorem 4.1. Applying all of these
bounds and combining all the terms, we find that with probability at least 1 − 2exp

(
−

c′ nδ
2
n(1−γ)2

b2

)
, we have

ρ2(∆̂)≤ c(1− γ)δ2n

{
∥∆̂∥2H +R2

}
+ cR(1− γ) δn∥∆̂∥µ︸ ︷︷ ︸

Bound on T1

+
λn

2

{
∥∆̂∥2H +R2

}
︸ ︷︷ ︸

Bound on T2

+ c(1− γ) δ2n

{
∥∆̂∥2H +R2

}
+ ρ2(∆̂)

2︸ ︷︷ ︸
Bound on T3

−λn∥∆̂∥2H.
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Re-arranging terms yields

1
2ρ

2(∆̂)≤ cR (1− γ) δn∥∆̂∥µ + ∥∆̂∥2H
{
2c(1− γ)δ2n −

1

2
λn

}
+R2

{
2c(1− γ)δ2n +

1

2
λn

}
.

Setting λn ≥ 4c(1−γ)δ2n ensures that the second term is negative. Combining with the lower
bound ρ2(∆̂)≥ (1− γ)∥∆̂∥2µ, we find that

1− γ

2
∥∆̂∥2µ ≤ cR(1− γ) δn∥∆̂∥µ + λnR

2.

By the Fenchel-Young inequality, we have

cR (1− γ) δn∥∆̂∥µ + λnR
2 ≤ 1−γ

4 ∥∆̂∥2µ + c2R2 (1− γ) δ2n + λnR
2.

Putting together the pieces, we conclude that there is a universal constant c̄ such that

∥∆̂∥2µ ≤ c̄R2

{
δ2n +

λn

1− γ

}
,

as claimed. This concludes the proof of Theorem 3.1 for δ = δn.
We note that all of the same steps actually hold for any δ ≥ δn, so that the bound given in

the theorem is also valid.

4.2. Proof overview for Theorem 3.4. We now turn to an overview of the proof of the
minimax lower bounds stated in Theorem 3.4. In Section 4.2.1, we explicitly define the MRP
families MA and MB . Section 4.2.2 then presents a high-level overview of the proof structure
that works for both Regimes A and B. The bulk of our technical analysis is deferred to
Appendix D of the supplementary material, where we provide the constructions of RKHSs
HA and HB and MRP model families MA and MB , and verify the conditions required by
the proof framework outlined in Section 4.2.2.

4.2.1. Full specification of the minimax lower bound. We begin by providing a more
rigorous statement of the minimax lower bound LB(R̄, σ̄, δn). In either Regime A or B, we
fix an RKHS H=HA or HB and a reward function r = rA or rB such that r ∈H, and then
consider MRPs of the form I (P, r, γ), of which the value function θ∗ ∈H. Throughout our
construction, we let µ(P) be the stationary distribution associated with transition kernel P
and always use notation µ to denote the Lebesgue measure (on state space X = [0,1)). The
stationary distribution µ(P) plays multiple roles. First, the observation pairs {(xi, x′i)}ni=1
are generated by drawing xi from distribution µ(P) and then a successor state x′i from the
probability transition P . Note moreover that metric ∥·∥µ in equation (LB(R̄, σ̄, δn)) is an
abbreviation of the L2

(
µ(P)

)
-norm, i.e. we measure the estimation error by

∥θ̂− θ∗∥2µ(P) := Eµ(P)

[(
θ̂(X)− θ∗(X)

)2]
.

Finally, the covariance operator Σcov(P) is induced by distribution µ(P) (recall equa-
tion (8))—i.e., Σcov(P) = EX∼µ(P)[ΦX ⊗ΦX ]—with ΦX denoting the representer of eval-
uation. Below, we denote by

{(
µj(P), ϕj(P)

)}∞
j=1

the eigenpairs associated with operator
Σcov(P).

As alluded to above, the lower bounds require precise definitions of the MRP families over
which they hold. We define two collections of problem instances MA(R̄, σ̄) and MB(R̄, σ̄)
that are considered in Regimes A and B respectively. In Regime A, we suppose the reward
function rA is uniformly bounded, i.e. ∥rA∥∞ ≤ 1, and define a (R̄, σ̄)-valid MRP family

(44a) MA ≡MA(R̄, σ̄)≡MA

(
R̄, σ̄,{µj}∞j=1; rA, γ,HA

)
:=
{

MRP I (P, rA, γ) | (i) The value function θ∗ ∈HA and inequalities (32b) hold.

(ii) The eigenpairs satisfy µj(P) = µj for j = 1,2, . . . and supj∈Z+
∥ϕj(P)∥∞ ≤ 2.

}
.
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In parallel, the (R̄, σ̄)-valid MRP family MB is set as

(44b) MB ≡MB(R̄, σ̄)≡MB

(
R̄, σ̄,{µj}∞j=1; rB, γ,HB

)
:=
{

MRP I (P, rB, γ) | (i) γ∥θ∗∥µ(P) ≤ 1. (ii) θ∗ ∈HB and inequalities (32b) hold.

(iii) The eigenpairs satisfy µj(P)≤ µj for any j ≥ 2 and supj∈Z+
∥ϕj(P)∥∞ ≤ 2.

}
.

The major differences between MRP families MA and MB are the regularity conditions and
the eigenvalue constraints. In Regime A, the reward function rA is properly normalized so
that ∥rA∥∞ ≤ 1, whereas we impose an upper bound on the value function norm γ∥θ∗∥µ(P)

in Regime B. Additionally, in family MA of Regime A, the eigenvalues are exactly equal to
the pre-specified parameters {µj}∞j=1. In contrast, we only require the eigenvalues are upper
bounded by parameters {µj}∞j=1 in family MB of Regime B, so they may be different.

As a point of clarification, the critical radius δn in lower bound LB(R̄, σ̄, δn) is defined by
the pre-specified constants {µj}∞j=1, not the eigenvalues {µj(P)}∞j=1. In Regime B in particu-
lar, parameter δn might be different from δn(P), the radius obtained by plugging eigenvalues
{µj(P)}∞j=1 into critical inequality (33). However, we still have relation δn ≥ δn(P) due to
our condition on eigenvalues in definition (44b). See Appendix D.1 of the supplementary
material for a proof of this claim. In this case, lower bound LB(R̄, σ̄, δn) further implies
∥θ̂− θ∗∥2

µ(P) ≥ c1 R̄
2δ2n(P).

4.2.2. High-level overview. We provide a high-level overview of the proof structure that
is shared by Regimes A and B. The main argument is based on Fano’s method, with the key
(and technically challenging) step being the construction of an ensemble of value estimation
problems that are “well-separated”. While it is well-known how to do so for classical (static)
non-parametric problems, doing so for Markov reward processes requires some new ideas.

Here we give the high-level overview, deferring the technical details of the construction
itself to the supplementary material. Our approach is to construct a collection {Im}Mm=1

of MRP instances, all of which share the same state space X = [0,1) and reward function
r. Let µ denote the Lebesgue measure over X , and let Pm, θ∗m and µm ≡ µ(Pm) denote
(respectively) the transition kernel, value function and stationary distribution associated with
Im. Let P1:n

m be the distribution of data {(xi, x′i)}ni=1 when the ground-truth model is Im.
Suppose that an index J is uniformly distributed over [M ] and observations {(xi, x′i)}ni=1

are generated i.i.d. from IJ . Given this set-up, an application of Fano’s method (cf. §15.3.2
in the book [50] for details) yields the lower bound

inf
θ̂

max
m†∈[M ]

Pm†

[∥∥θ̂− θ∗m†

∥∥
µ
≥ 1

2
min
m ̸=m′

∥∥θ∗m − θ∗m′

∥∥
µ

]

≥ 1−
log 2 +maxm,m′∈[M ]DKL

(
P1:n
m

∥∥P1:n
m′

)
logM

.

Moreover, suppose that we can also ensure that
dµm

dµ
(x)≥ 1

2
for all x ∈ X and m ∈ [M ].(45)

In this way, we can connect the L2(µ) error with the L2(µm) error via the inequality
∥θ̂− θ∗m∥µm

≥ 1√
2
∥θ̂− θ∗∥µ. It then follows that

(46) inf
θ̂

max
m†∈[M ]

Pm†

[∥∥θ̂− θ∗m†

∥∥
µm†

≥ 1

2
√
2

min
m ̸=m′

∥∥θ∗m − θ∗m′

∥∥
µ

]
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≥ 1−
log 2 +maxm,m′∈[M ]DKL

(
P1:n
m

∥∥P1:n
m′

)
logM

.

Exploiting the Fano inequality so as to obtain a “good” lower bound involves construct-
ing a suitable family of models. Recalling the statistical dimension dn. In our proof of ei-
ther Regime A or B, we establish the existence of a family {Im}Mm=1 with log cardinality
logM ≥ dn

10 , and such that

max
m,m′∈[M ]

DKL
(
P1:n
m

∥∥P1:n
m′

)
≤ dn

40
and(47a)

min
m̸=m′

∥∥θ∗m − θ∗m′

∥∥
µ
≥ c′1

√
c Rδn(47b)

where c′1 is a universal constant and c is given in condition (34). See Lemmas D.2 and D.3 at
the end of Appendix D.2.4 of the supplementary material for the precise statement of these
claims.

Given these claims, we can combine the pieces to prove Theorem 3.4. Given the condi-
tion (47a) and the bound logM ≥ dn

10 , we have 1
logM maxm,m′∈[M ]DKL

(
P1:n
m

∥∥ P1:n
m′

)
≤ 1

4 .

Additionally, given that dn ≥ 10, it holds that logM ≥ dn

10 ≥ 1 and therefore log 2
logM ≤ log 2.

Combining these inequalities, we find that the right hand side of inequality (46) is larger
than a positive constant

{
1 − 1

4 − log 2
}

. We then substitute the minimum value function
distance minm̸=m′

∥∥θ∗m − θ∗m′

∥∥
µ

in the left hand side of inequality (46) by its lower bound in
the inequality (47b). This completes the high-level overview of the proof of Theorem 3.4.

With this perspective in place, the remaining steps—and the technically challenging por-
tion of the argument—should be clear. In particular, the remainder of our argument involves:
• constructing two reproducing kernel Hilbert spaces, denoted by HA and HB , along with

two subsets {Im}Mm=1 belonging to either MA or MB .
• verifying that both groups of the MRP instances satisfy the claimed properties (45), (47a)

and (47b).
We defer the constructions and the proofs of the claims to Appendix D in the supplementary
material.

5. Discussion. In this paper, we have analyzed the performance of a regularized kernel-
based least-squares temporal difference (LSTD) estimator for policy evaluation. Our main
contribution was to prove non-asymptotic upper bounds on the statistical estimation error,
along with guidance for the choices of the regularization parameter required to achieve such
bounds. Notably, our upper bounds depend on the problem structure via the sample size, the
effective horizon, the eigenvalues of the kernel operator, and the variance of the Bellman
residual. As we show, the bounds show a wide range of behavior as these different structural
components are altered. Moreover, we prove a matching minimax lower bounds over distinct
subclasses of problems that demonstrate the sharpness of our upper bounds.

Our study leaves open a number of intriguing questions; let us mention a few of them
here to conclude. First, although our bounds are instance-dependent, this dependence is not
as refined as recent results in the simpler tabular and linear function settings [26, 32, 56]. In
particular, our current results do not explicitly track the mixing properties of the transition
kernel, which should enter in any such refined analysis. Second, the analysis of this paper
was carried out under i.i.d. assumptions on transition sampling model. However, in practice,
the data may be collected from Markov chain trajectories or adaptive experiments and the
transition pairs are no longer independent. It is interesting to understand how dependence in
data affects sample complexity of policy evaluation, and since the first posting of this paper,
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a follow-up paper [14] due to subset of the current authors provides some insight into this
question. Third, this paper assumes that samples are drawn from the stationary distribution
of the Markov chain; in practice, such data may not be available, so that it is interesting
to consider extensions of this kernel LSTD estimator suitable for the off-policy setting. In
Appendix F of the supplementary material, we present some extensions of our current results
to the off-policy setting. However, it remains open as to whether the optimality and sharpness
of our analysis still hold in the off-policy setting, and further research is needed to address
this question. Last, the results in this paper use the L2(µ)-norm to quantify the error. In
applications of policy evaluation, other error metrics may be of interest, including pointwise
errors (

∣∣θ̂(x)− θ∗(x)
∣∣ for a fixed state x ∈ X ), or sup-norm guarantees (∥θ̂ − θ∗∥∞). These

are interesting directions for future study.
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[37] ORMONEIT, D. and SEN, Ś. (2002). Kernel-based reinforcement learning. Machine learning 49 161–178.
[38] PANANJADY, A. and WAINWRIGHT, M. J. (2020). Instance-Dependent ℓ∞-Bounds for Policy Evaluation

in Tabular Reinforcement Learning. IEEE Transactions on Information Theory 67 566–585.
[39] PERDOMO, J. C., KRISHNAMURTHY, A., BARTLETT, P. and KAKADE, S. (2022). A sharp characterization

of linear estimators for offline policy evaluation. arXiv preprint arXiv:2203.04236.
[40] PUTERMAN, M. L. (2005). Markov decision processes: Discrete stochastic dynamic programming. Wiley.
[41] RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2012). Minimax-optimal rates for sparse additive models

over kernel classes via convex programming. Journal of Machine Learning Research 12 389–427.
[42] SHAWE-TAYLOR, J., CRISTIANINI, N. et al. (2004). Kernel methods for pattern analysis. Cambridge uni-

versity press.
[43] SOBEL, M. J. (1982). The variance of discounted Markov decision processes. Journal of Applied Probability

19 794–802.
[44] STONE, C. J. (1982). Optimal global rates of convergence for non-parametric regression. Annals of Statistics

10 1040–1053.
[45] SUTTON, R. S. (1988). Learning to predict via the methods of temporal differences. Machine Learning 3

9–44.
[46] SUTTON, R. S. and BARTO, A. G. (2018). Reinforcement learning: An introduction. MIT press.
[47] TAYLOR, G. and PARR, R. (2009). Kernelized value function approximation for reinforcement learning. In

Proceedings of the 26th annual international conference on machine learning 1017–1024.
[48] TSITSIKLIS, J. N. and VAN ROY, B. (1997). Analysis of temporal-diffference learning with function ap-

proximation. In Advances in neural information processing systems 1075–1081.
[49] VAN DE GEER, S. (2000). Empirical Processes in M -Estimation. Cambridge University Press.
[50] WAINWRIGHT, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint 48. Cambridge Uni-

versity Press.
[51] WHITE, H. (1982). Instrumental variables regression with independent observations. Econometrica 50 483–

499.



26

[52] WOOLDRIDGE, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. MIT Press, Cam-
bridge, MA.

[53] XIE, T., MA, Y. and WANG, Y.-X. (2019). Towards optimal off-policy evaluation for reinforcement learn-
ing with marginalized importance sampling. In Advances in Neural Information Processing Systems
9668–9678.

[54] YANG, Y., PILANCI, M., WAINWRIGHT, M. J. et al. (2017). Randomized sketches for kernels: Fast and
optimal nonparametric regression. The Annals of Statistics 45 991–1023.

[55] YIN, M. and WANG, Y.-X. (2020). Asymptotically efficient off-policy evaluation for tabular reinforcement
learning. arXiv preprint arXiv:2001.10742.

[56] YIN, M. and WANG, Y.-X. (2021). Towards instance-optimal offline reinforcement learning with pes-
simism. Advances in neural information processing systems 34 4065–4078.

[57] YU, B. (1997). Assouad, Fano and Le Cam. In Festschrift for Lucien Le Cam 423–435. Springer-Verlag,
Berlin.

[58] YU, H. and BERTSEKAS, D. P. (2010). Error bounds for approximations from projected linear equations.
Mathematics of Operations Research 35 306–329.

[59] ZHANG, T. (2005). Learning bounds for kernel regression using effective data dimensionality. Neural Com-
putation 17 2077–2098.



Submitted to the Annals of Statistics

SUPPLEMENTARY TO “OPTIMAL POLICY EVALUATION USING
KERNEL-BASED TEMPORAL DIFFERENCE METHODS”

BY YAQI DUAN1,a, MENGDI WANG2,b AND MARTIN J. WAINWRIGHT3,c

1Leonard N. Stern School of Business, New York University, ayaqi.duan@stern.nyu.edu

2Department of ECE, Princeton University, bmengdiw@princeton.edu

3Departments of EECS and Mathematics, Massachusetts Institute of Technology, cwainwrigwork@gmail.com

APPENDIX A: DETAILS OF SIMULATIONS

In this appendix, we provide the details of the families of MRPs used for the simulation
results in Section 3.3.

A.1. Families of MRPs. We constructed families of MRPs all with state space X = [0,1),
and the reward function

r(x) := 1
{
x ∈

[
0, 12
)}

− 1
{
x ∈

[
1
2 ,1
)}

.(48a)

The transition operator is given by

P(x′ | x) :=


2(1− p), if x,x′ ∈

[
0, 12
)

or x,x′ ∈
[
1
2 ,1
)
,

2p, if

{
x ∈

[
0, 12
)

x′ ∈
[
1
2 ,1
) or

{
x ∈

[
1
2 ,1
)

x′ ∈
[
0, 12
)
.

(48b)

See Figure 4 for an illustration of the structure of this transition function. By construction,

2(1 − p)

0

2p

2p

2(1 − p)

1

1

1
2

1
2

x′�

x

Fig 4: The density of data {(xi, x′i)}
n
i=1.

the uniform distribution µ is stationary. The samples {(xi, x′i)}ni=1 were i.i.d. drawn from the
pair (µ,P). The two ensembles of probability transitions (Ensembles A and B) used in our
simulations are distinguished by the choice p ∈

{
1
4 ,

1−γ
γ

}
.

In addition to the two ensembles of transition functions, our experiments involve com-
parisons between three different kernels, all of which were constructed based on the Walsh
system. Let Wj : [0,1)→{−1,1} be the j-th Walsh function. For each i= 1,2,3, we define
a kernel Ki :X ×X →R as

Ki(x, y) :=

∞∑
j=1

µj(Ki)Wj−1(x)Wj−1(y).(49a)
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This choice ensures that each Ki has {Wj−1}∞j=1 as its eigenfunctions. We choose the asso-
ciated kernel eigenvalues as

µj(Ki) =


j−6/5 for i= 1

j−2 for i= 2

exp
(
− (j − 1)2

)
for i= 3.

(49b)

Let Hi be the RKHS associated with kernel Ki.

Calculations of predicted slopes. Let us now calculate the theoretically predicted slopes
given in equations (31a) and (31b). Note that Corollary 3.3(b)—see in particular the
bound (26)—predicts that the L2(µ) error should scale as

R
1

2α+1

(κ2σ2(θ∗)

(1− γ)2
1

n

) α

2α+1

.(50)

Since κ= 1 for our construction, in order to understand the scaling with the effective horizon,
we need to calculate the quantities σ2(θ∗) and R. Some calculations show that the value
function θ∗ is given by

θ∗(x) = 1
1−γ+2γp

(
1
{
x ∈

[
0, 12
)}

− 1
{
x ∈

[
1
2 ,1
)})

.(51)

Consequently, we can see that r, θ∗ ∈Hi for i= 1,2,3.
Moreover, we find that variance term σ2(θ∗) takes the form

σ2(θ∗) =
4γ2 p(1− p)

(1− γ + 2γp)2
.(52a)

For each RKHS Hi, the radius R(Ki) is given by

R(Ki) :=max
{
∥θ∗ − r∥Hi

, 2∥θ
∗∥∞

b(Ki)

}
= 1

1−γ+2γp max
{

γ(1−2p)√
µ1(Ki)

, 2
b(Ki)

}
(52b)

with b(Ki) =
√∑

j µj(Ki).

For the choice p= 1−γ
γ , it can be seen that both σ2(θ∗) and R(Ki) scale as 1

1−γ . Substi-
tuting these scalings into equation (50) (and retaining only the dependence on the effective
horizon) yields ( 1

1− γ

) 1
2α+1

( 1

(1− γ)3

) α
2α+1

=
( 1

1− γ

)3α+1
2α+1

,

as claimed in equation (31a).
For the choice p = 1

4 , both σ2(θ∗) and R(Ki) remain bounded as the effective horizon

grows, so that the corresponding slope is
(

1
(1−γ)2

) α
2α+1

=
(

1
1−γ

) 2α

2α+1 , as claimed in equa-
tion (31b).

APPENDIX B: COMPARISON OF THE FAST VERSUS SLOW RATES

In this appendix, we compare how, how the different bounds in our paper depend on the ef-
fective horizon H = (1−γ)−1. Specifically, we compare the slow and fast-rate upper bounds
from Theorem 3.1 with the minimax lower bound from Theorem 3.4 in the context of para-
metric function approximation (cf. Section 3.2.1).

We can see that the bounds exhibit distinct behaviors for different regimes characterized
by the scalings of R and σ(θ∗). In general, when certain sample size conditions are satisfied,
the fast-rate upper bound and the minimax lower bound align with each other. The slow-rate
upper bound, although generally looser than the fast-rate bound, provides coverage across
the entire range of parameters, making it applicable for large planning horizons H or small
sample sizes n.
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Fast-rate 
upper bound  (H3)

Minimax lower bound  
in Regime A  (H3)

Slow-rate 
upper bound  (H4)

0 +∞

Fast-rate 
upper bound  (H2)

Minimax lower bound  
in Regime B  (H2)

Slow-rate 
upper bound  (H2)

0 +∞

(a) Regime A (b) Regime B

Fig 5. Illustration of the bounds on the estimation error ∥θ̂−θ∗∥2µ v.s. horizon H = (1− γ)−1.
In both regimes, the red curves represent slow-rate upper bounds, while the blue curves
represent fast-rate upper bounds. The grey curves correspond to minimax lower bounds.
The dashed vertical lines indicate conditions (18) and (36). (a) Plot for Regime A with
R≍ σ2(θ∗)≍ (1− γ)−1. The fast-rate bound is better than the slow-rate bound. However,
the slow-rate bound remains feasible for the entire range of planning horizon H . The minimax
lower bound matches the fast-rate upper bound. (b) Plot for Regime B with R≍ σ2(θ∗)≍ 1.
Both the fast and slow rate upper bounds exhibit the same rate and match the minimax lower
bound.

APPENDIX C: TECHNICAL RESULTS FOR THEOREM 3.1

In this appendix, we prove the technical lemmas that underlie the proof of Theorem 3.1.
Appendix C.1 contains the proof of Lemma 4.1, which provides the basic inequality on the er-
ror. Appendices C.2 and C.3 are devoted, respectively, to the proof of Lemmas 4.2 and 4.3 that
are used in the proof of Theorem 3.1. Recall that these two lemmas provide high-probability
upper bounds on the quantities T1 and T3, respectively, as defined in Lemma 4.1.

C.1. Proof of Lemma 4.1. Recall that θ̂ is defined by the estimating equation (10),
whereas the actual population-level estimate θ∗ satisfies equation (9). Subtracting these two
equations yields(

Σ̂cov + λnI
)
θ̂−Σcovθ

∗ =
(
Σ̂cov + λnI −Σcov

)
r+ γ

(
Σ̂crθ̂−Σcrθ

∗).
Recalling that ∆̂ = θ̂− θ∗ is the error, we substitute θ̂ = θ∗ + ∆̂ to find that(

Σ̂cov + λnI − γΣ̂cr

)
∆̂ =

(
Σ̂cov + λnI −Σcov)(r− θ∗

)
+ γ
(
Σ̂cr −Σcr

)
θ∗.

Again making use of equation (9), we have Σcov(r− θ∗) + γΣcrθ
∗ = 0, which implies that(

Σ̂cov + λnI − γΣ̂cr

)
∆̂ =

(
Σ̂cov + λnI

)
(r− θ∗) + γΣ̂crθ

∗.

Taking the Hilbert inner product of both sides with ∆̂ then yields〈
∆̂,
(
Σ̂cov + λnI − γΣ̂cr

)
∆̂
〉
H
=
〈
∆̂,
(
Σ̂cov + λnI

)
(r− θ∗) + γΣ̂crθ

∗〉
H
.(53)

The left hand side of equation (53) can then be written as〈
∆̂,
(
Σ̂cov + λnI − γΣ̂cr

)
∆̂
〉
H
=
〈
∆̂, (Σcov − γΣcr)∆̂

〉
H
+ λn∥∆̂∥2H +

〈
∆̂, (Γ̂− Γ)∆̂

〉
H
,

where Γ := Σcov−γΣcr, and Γ̂ := Σ̂cov−γΣ̂cr. The right hand side of equation (53) satisfies〈
∆̂,
(
Σ̂cov + λnI

)
(r− θ∗) + γΣ̂crθ

∗〉
H
=
〈
∆̂, Σ̂cov(r− θ∗) + γΣ̂crθ

∗〉
H
+ λn

〈
∆̂, r− θ∗

〉
H
.
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In this way, we reduce equation (53) to

(54) ρ2(∆̂) =
〈
∆̂, (Σcov − γΣcr)∆̂

〉
H
=
〈
∆̂, Σ̂cov(r− θ∗) + γΣ̂crθ

∗〉
H

+ λn

〈
∆̂, r− θ∗

〉
H
+
〈
∆̂, (Γ− Γ̂)∆̂

〉
H
− λn∥∆̂∥2H.

We have thus established equality (ii) in equation (39) from the lemma statement.
It remains to prove the lower bound (i) in equation (39). Letting X ∼ µ and X ′ ∼P(· |X),

we can write

E[f(X)f(X ′)] =
〈
f, Σcrf

〉
H

and E[f2(X)] =
〈
f, Σcovf

〉
H
.

Consequently, by applying Young’s inequality, we find that

E[f(X)f(X ′)]︸ ︷︷ ︸
⟨f,Σcrf⟩H

≤ 1

2

{
E[f2(X)] +E[f2(X ′)]

}
= E[f2(X)]︸ ︷︷ ︸

⟨f,Σcovf⟩H

,(55)

where the equality follows since X and X ′ have the same marginal distributions, due to the
stationarity of µ. This completes the proof of Lemma 4.1.

C.2. Proof of Lemma 4.2. Define the i.i.d. random variables νi = r(xi) − θ∗(xi) +
γθ∗(x′i). Since Σcovθ

∗ =Σcovr+ γΣcrθ
∗, we can write T1 as

T1 =
1

n

n∑
i=1

(
∆̂(xi)νi −E[∆̂(xi)νi]

)
.

For scalars t > 0, we define the family of random variables

Zn(t) := sup
∥f∥µ≤t
∥f∥H≤R

∣∣∣ 1
n

n∑
i=1

(
f(xi)νi −E[f(xi)νi]

)∣∣∣,(56)

and let tn > 0 be the smallest positive solution to the inequality

E[Zn(t)]≤ (1− γ)
t2

4
.

Our first step is to relate tn to the critical radius δn involved in Theorem 3.1.

LEMMA C.1. There is a universal constant c0 such that, for any ζ ∈ {bR,κσ(θ∗)}, we
have

tn ≤ un(ζ) := c0 R δn(ζ).(57)

The remainder of the proof applies to both un(bR) or un(κσ(θ∗)) without any differences,
so we adopt the generic notation un for either. Our next step is to use un to define an event
that allows us to establish the claim of Lemma 4.2. For a given f ∈H, we say that inequality
I(f) holds when∣∣∣ 1

n

n∑
i=1

(
f(xi)νi −E[f(xi)νi]

)∣∣∣ ≥ (1− γ)u2nmax
{
1, ∥f∥HR

}
+ (1− γ)un ∥f∥µ .(I(f))

Here c > 0 is a universal constant to be specified as part of the proof. Now consider the event
A :=

{
∃ f ∈H s.t I(f) holds

}
. Note that conditioned on Ac, we have the bound

T1 ≤ (1− γ)u2nmax
{
1, ∥∆̂∥H

R

}
+ (1− γ)un ∥∆̂∥µ

≤ c20 (1− γ) δ2n

{
∥∆̂∥2H +R2

}
+ c0 (1− γ)R∥∆̂∥µδn,



KERNEL-BASED POLICY EVALUATION 31

as desired.
Consequently, the remainder of our proof is directed at bounding P[A]. We do so by relat-

ing the event A to a tail event associated with the random variable Zn(un). In particular, we
make the following claim:

LEMMA C.2. We have the upper bound

P[A] ≤ P
[
Zn(un)≥ (1− γ)u2n

]
.(58)

Our final lemma provides control on the upper tail of Zn(un).

LEMMA C.3. There is a universal constant c1 such that

P
[
Zn(un)≥ (1− γ)u2n

]
≤ exp

(
− c1 n

u2
n (1−γ)2

b2R2

)
= exp

(
− c1c

2
0
nδ2n (1−γ)2

b2

)
.(59)

Combining Lemmas C.2 and C.3 yields the conclusion of Lemma 4.2 with c′ = c1c
2
0.

It remains to prove our three auxiliary lemmas, and we prove Lemmas C.1, C.2, and C.3 in
Appendices C.2.1 to C.2.3, respectively.

C.2.1. Proof of Lemma C.1. By definition of tn, we have (1− γ) t2n
4 = E[Zn(tn)]. Con-

sequently, we can prove the claim by upper bounding the expectation. Let {εi}ni=1 be an
i.i.d. sequence of Rademacher variables, independent of {(xi, x′i)}ni=1. From a standard sym-
metrization argument, we have

E[Zn(tn)]≤ 2 E

[
sup

∥f∥µ≤tn
∥f∥H≤R

∣∣∣ 1
n

n∑
i=1

εif(xi)νi

∣∣∣].
Proof for δn(bR). We begin by proving the claim when ζ = bR. Note that for any (xi, x

′
i),

we have

|νi|=
∣∣r(xi)− θ∗(xi) + γθ∗(x′i)

∣∣ ≤ b∥θ∗ − r∥H + ∥θ∗∥∞ ≤ 2bR,

using the definition of R. Consequently, by the Ledoux-Talagrand contraction, we have

(1− γ)
t2n
4

= E[Zn(tn)] ≤ 4bR E

[
sup

∥f∥µ≤tn
∥f∥H≤R

∣∣∣ 1
n

n∑
i=1

εif(xi)
∣∣∣]

(i)
= 4bR2 E

[
sup

∥g∥µ≤tn/R
∥g∥H≤1

∣∣∣ 1
n

n∑
i=1

εig(xi)
∣∣∣]

(ii)

≤ 4bR2 R(1− γ)

bR

{
δ2n +

tnδn
R

}
= 4R2 (1− γ)

{
δ2n +

tnδn
R

}
where equality (i) follows by reparameterizing the supremum in terms of the rescaled func-
tions g = f/R, and inequality (ii) follows from the definition of δn(bR). This implies that
there is a universal constant c0 such that tn ≤ c0 R δn, as claimed.
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Proof for δn(κσ(θ∗)). In this case, we begin by observing that

E[Zn(tn)]≤ 2σ(θ∗) E

[
sup

∥f∥µ≤tn
∥f∥H≤R

∣∣∣ 1
n

n∑
i=1

f(xi)ξi

∣∣∣]

where the variables ξi =
εiν(xi,x′

i)
σ(θ∗) have zero mean and unit variance.

We now reparameterize the supremum in terms of the rescaled functions g = f/R, so that
∥g∥H ≤ 1 and ∥g∥µ ≤ tn/R. In this way, we find that

(1− γ)
t2n
4

= E[Zn(tn)] ≤
(
2σ(θ∗)R

)
E

[
sup

∥g∥µ≤tn/R
∥g∥H≤1

∣∣∣ 1
n

n∑
i=1

g(xi)ξi

∣∣∣].
Recall that g ∈H can be written in the form g =

∑∞
j=1 gjϕj for some coefficients {gj}∞j=1

such that ∥g∥2µ =
∑∞

j=1 g
2
j , and ∥g∥2H =

∑∞
j=1

g2
j

µj
. Consequently, for any g involved in the

supremum, we have

E

[
sup

∥g∥µ≤tn/R
∥g∥H≤1

∣∣∣ 1
n

n∑
i=1

g(xi)ξi

∣∣∣]= E

[
sup

∥g∥µ≤tn/R
∥g∥H≤1

∣∣∣∣ ∞∑
j=1

gj

( 1
n

n∑
i=1

ξiϕj(xi)
)∣∣∣∣
]

≤ E

[{
2

∞∑
j=1

min
{ t2n
R2 , µj

}( 1
n

n∑
i=1

ξiϕj(xi)
)2}1/2

]

≤

√√√√ 2

n

∞∑
j=1

min
{ t2n
R2 , µj

}
E
[
ξ2ϕ2

j (X)
]
.

Since E[ξ2] = 1 and ϕ2
j (X)≤ κ2 by assumption, we have E

[
ξ2ϕ2

j (X)
]
≤ κ2. Thus, we have

established that

E

[
sup

∥g∥µ≤tn/R
∥g∥H≤1

∣∣∣ 1
n

n∑
i=1

g(xi)ξi

∣∣∣]≤ κ

√√√√ 2

n

∞∑
j=1

min
{ t2n
R2 , µj

}
≤

√
2κ

R(1− γ)

κσ(θ∗)

{
δ2n +

δntn
R

}
,

where the final inequality follows from the definition of δn = δn(κσ(θ
∗)).

Putting together all the pieces, we have

(1− γ)
t2n
4

≤ E[Zn(tn)]≤
(
2σ(θ∗)R

)√2R (1− γ)

σ(θ∗)

{
δ2n +

δntn
R

}
= 2

√
2R2 (1− γ)

{
δ2n +

δntn
R

}
.

This implies that there is a universal constant c0 such that tn ≤ c0 R δn, as claimed.

C.2.2. Proof of Lemma C.2. First, we claim that if I(f) holds for any function, then we
can find a function g with ∥g∥H ≤R such that∣∣∣ 1

n

n∑
i=1

g(xi)νi

∣∣∣ ≥ (1− γ)
{
u2n + un ∥g∥µ

}
.(60)



KERNEL-BASED POLICY EVALUATION 33

Indeed, if ∥f∥H ≤ R, then we are done. Otherwise, we define the rescaled function g =
R

∥f∥H f , and note that it also belongs to the Hilbert space, and satisfies ∥g∥H =R. Moreover,
since f satisfies I(f), we have∣∣∣ 1

n

n∑
i=1

g(xi)νi

∣∣∣ = R

∥f∥H

∣∣∣ 1
n

n∑
i=1

f(xi)νi

∣∣∣
≥ R

∥f∥H

{
(1− γ)u2nmax

{
1, ∥f∥HR

}
+ (1− γ)un ∥f∥µ

}
= (1− γ)

{
u2n + un ∥g∥µ

}
.

Next, we claim that we can also find a function h such that, in addition, satisfies the bound
∥h∥µ ≤ un and ∣∣∣ 1

n

n∑
i=1

h(xi)νi

∣∣∣ ≥ (1− γ)u2n.(61)

If the function g constructed above satisfies ∥g∥µ ≤ un, then we are done. Otherwise, we set
h= un

∥g∥µ g. Note that h ∈H satisfies ∥h∥H ≤ ∥g∥H =R and ∥h∥µ = un. Moreover, since g

satisfies inequality (60), we have∣∣∣ 1
n

n∑
i=1

h(xi)νi

∣∣∣ = un
∥g∥µ

∣∣∣ 1
n

n∑
i=1

g(xi)νi

∣∣∣ ≥ un
∥g∥µ

(1− γ) max
{
u2n + un ∥g∥µ

}
≥ (1− γ)u2n.

Consequently, we have shown that if the event A holds, then we can find a function h such
that ∥h∥H ≤ R and ∥h∥µ ≤ un, and such that the lower bound (61) holds. The existence of
this h implies that Zn(un)≥ (1− γ)u2n, which shows that A⊂ {Zn(un)≥ (1− γ)u2n}, as
claimed.

C.2.3. Proof of Lemma C.3. By definition of un from Lemma C.1, we have un ≥ tn, and
hence

E[Zn(un)] ≤ (1− γ) un
tn
4

≤ (1− γ)
u2n
4
,

using the definition of tn. Our next step is to prove that there is a universal constant c1 such
that

P
[
Zn(un)≥ 2E[Zn(un)] + (1− γ) u2

n

2

]
≤ exp

(
− c1n

u2
n(1−γ)2

b2R2

)
.(62)

The statement given in the lemma follows by combining these two claims.
It remains to prove the tail bound (62). By definition, the random variable Zn(tn) corre-

sponds to the supremum of an empirical process in terms of functions of the form

g(xi, x
′
i) = f(xi)

{(
r(xi)− θ∗(xi)

)
+ γθ∗(x′i)

}
︸ ︷︷ ︸

ν(xi,x′
i)

where f varies, while satisfying the constraints ∥f∥µ ≤ un and ∥f∥H ≤R. In order to estab-
lish concentration for this supremum, we can apply Talagrand’s theorem (cf. Theorem 3.27
in the book [50]). Doing so requires us to bound ∥g∥∞, as well as E[g2], uniformly over the
relevant function class.
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Recall that our definition of b ensures that ∥h∥∞ ≤ b∥h∥H for any h ∈H. Consequently,
we have

sup
x,x′

|ν(x,x′)| ≤ b∥θ∗ − r∥H + ∥θ∗∥∞ = bR, and

∥g∥∞ = sup
x,x′

∣∣f(x)ν(x,x′)∣∣≤ ∥f∥∞bR≤ b2R2,

where we have used the fact that ∥f∥∞ ≤ b∥f∥H ≤ bR. On the other hand, we have

∥g∥2µ = E
[
f2(X)ν2(X,X ′)

]
≤ b2R2E[f2(X)

]
≤ b2R2u2n.

By Talagrand’s theorem (cf. equation (3.86) in the book [50]), there are universal constants
c2, c3 such that

P
[
Zn(un)≥ 2E[Zn(un)] + c2bRun

√
s+ c3b

2R2s
]
≤ exp(−ns).

Setting s= c1
u2
n(1−γ)2

b2R2 for a sufficiently small constant c1 yields the claim in equation (62).

C.3. Proof of Lemma 4.3. Recall our definitions of the operator Γ = Σcov − γΣcr, as
well as its empirical version Γ̂ = Σ̂cov − γΣ̂cr, as given in Lemma 4.1. Recall the functional
ρ2(f) = E[f2(X)− γf(X)f(X ′)], as previously defined in equation (37). For each t > 0,
define the random variable

Z̃n(t) := sup
ρ(f)≤t
∥f∥H≤R

∣∣⟨f, (Γ̂− Γ)f⟩H
∣∣,(63)

and let tn > 0 be the smallest positive solution to the inequality

E[Z̃n(t)] ≤
t2

8
.(64)

We begin by relating this critical radius tn to our original radius δn:

LEMMA C.4. There is a universal constant c0 such that

tn ≤ un := c0R
√

1− γ δn(bR).(65)

If, in addition, the sample size condition (18) holds, then the same bound holds with
δn(κσ(θ

∗)).

See Appendix C.3.1 for the proof of this claim.

With this set-up, the remainder of proof has a structure similar to that of Lemma 4.2. We
say that a function f ∈H satisfies inequality J(f) if∣∣⟨f, (Γ̂− Γ)f⟩H

∣∣ ≥ u2n max
{
1,

∥f∥2
H

R2

}
+

ρ2(f)

2
.(J(f))

Now consider the event B :=
{
∃ f ∈H s.t J(f) holds

}
. Note that conditioned on Bc, we

have the bound∣∣⟨∆̂, (Γ̂− Γ)∆̂⟩H
∣∣≤ u2n max

{
1,

∥∆̂∥2
H

R2

}
+

ρ2(∆̂)

2

≤ c20 δ
2
n (1− γ) max

{
R2,∥∆̂∥2H

}
+

ρ2(∆̂)

2
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where the second inequality follows from the definition of un given in equation (64). This
is the bound claimed in the statement of Lemma 4.3. Consequently, it suffices to bound the
probability P[B].

We begin by upper bounding the probability of P[B] in terms of the tail behavior of the
random variable Z̃n(un) as follows:

LEMMA C.5. We have the upper bound

P[B]≤ P
[
Z̃n(un)≥ u2

n

2

]
.(66)

See Appendix C.3.2 for the proof.

Our second lemma provides control on the upper tail of Z̃n(un).

LEMMA C.6. There is a universal constant c1 such that

P
[
Z̃n(un)≥ u2

n

2

]
≤ exp

(
− c1n

u2
n

b2R2

)
= exp

(
− c1c

2
0
nδ2n(1−γ)

b2

)
.(67)

See Appendix C.3.3 for the proof of this claim.

C.3.1. Proof of Lemma C.4. Define the random variables yi = (xi, x
′
i) along with the

function g(yi) := f2(xi)− γf(xi)f(x
′
i), and note that Z̃n(tn) is a supremum of the empir-

ical process
{

1
n

∑n
i=1(g(yi)− E[g(yi)])

}
as g varies as a function of f , and f satisfies the

constraints ∥f∥H ≤R and ρ(f)≤ tn.
By a standard symmetrization argument, we have

E[Z̃n(tn)] = E

[
sup

ρ(f)≤tn
∥f∥H≤R

∣∣∣ 1
n

n∑
i=1

(
g(yi)−E[g(Y )]

)∣∣∣] ≤ 2E

[
sup

ρ(f)≤tn
∥f∥H≤R

∣∣∣ 1
n

n∑
i=1

εig(yi)
∣∣∣],

where {εi}ni=1 is an i.i.d. sequence of Rademacher variables.
Now by the lower bound (38), the constraint ρ(f)≤ tn implies that ∥f∥µ ≤ tn√

1−γ
. Intro-

ducing the shorthand E =
{
f ∈H | ∥f∥µ ≤ tn√

1−γ
, ∥f∥H ≤R

}
, we have

1
2E[Z̃n(tn)]≤ E

[
sup
f∈E

∣∣∣ 1
n

n∑
i=1

εi
(
f2(xi)− γf(xi)f(x

′
i)
)∣∣∣]

≤ E

[
sup
f∈E

∣∣∣ 1
n

n∑
i=1

εif
2(xi)

∣∣∣]+E

[
sup
f∈E

∣∣∣ 1
n

n∑
i=1

εif(xi)f(x
′
i)
∣∣∣].

From this point, our proof diverges, depending on the two choices of δn.

Proof for δn(bR). In this case, we use the fact that ∥f∥∞ ≤ bR. Combined with the Ledoux-
Talagrand contraction, we find that

1
2E[Z̃n(tn)]≤ 2bR E

[
sup
f∈E

∣∣∣ 1
n

n∑
i=1

εif(xi)
∣∣∣]+ 4bR E

[
sup
f∈E

∣∣∣ 1
n

n∑
i=1

εif(xi)
∣∣∣]

= 6bR E

[
sup
f∈E

∣∣∣ 1
n

n∑
i=1

εif(xi)
∣∣∣].
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Define the rescaled ellipse Ẽ := 1
RE =

{
h ∈H | ∥h∥µ ≤ tn

R
√
1−γ

, ∥h∥H ≤ 1
}

. By construc-
tion, we have

E

[
sup
f∈E

∣∣∣ 1
n

n∑
i=1

εif(xi)
∣∣∣]=R E

[
sup
h∈Ẽ

∣∣∣ 1
n

n∑
i=1

εih(xi)
∣∣∣].

Finally, by definition of δn(bR), we are guaranteed that

E

[
sup
h∈Ẽ

∣∣∣ 1
n

n∑
i=1

εih(xi)
∣∣∣]≤ R(1− γ)

bR
max

{
δ2n, δn

tn
R
√
1−γ

}
.

Putting together the pieces, using the definition of tn, we have shown that

t2n
8

= E[Z̃n(tn)]≤
(
6bR2

) R(1− γ)

bR
max

{
δ2n, δn

tn
R
√
1−γ

}
= 6R2 (1− γ) max

{
δ2n, δn

tn
R
√
1−γ

}
.

This implies that there is a universal constant c0 such that t2n ≤ c20R
2 (1− γ) δ2n, as claimed

in the statement of the lemma.

Proof for δn(κσ(θ
∗)). Recall the ellipse E =

{
f ∈H | ∥f∥µ ≤ tn√

1−γ
, ∥f∥H ≤R

}
. We

claim that it suffices to show that under the assumed bound (18) on the sample size, we
have

sup
f∈E

∥f∥∞ ≤ β :=
κσ(θ∗)

128

{
1 +

tn
δnR

√
1− γ

}
.(68)

Indeed, if this bound holds, then we can perform the Ledoux-Talagrand contraction with the
constraint ∥f∥∞ ≤ β, so as to conclude that

1
2E[Z̃n(tn)]≤ 6β E

[
sup
f∈E

∣∣∣ 1
n

n∑
i=1

εif(xi)
∣∣∣].

Proceeding as before, we find that

t2n
16

= 1
2E[Z̃n(tn)]≤ 6β

R2(1− γ)

κσ(θ∗)

{
δ2n +

δntn
R
√
1− γ

}
=

R2(1− γ)

32

{
1 +

tn
δnR

√
1− γ

} {
δ2n +

δntn
R
√
1− γ

}
=

R2(1− γ)

32

{
δ2n + 2

δntn
R
√
1− γ

}
+

t2n
32

.

This bound implies that tn ≤ c0R
√
1− γ δn, as claimed.

Accordingly, let us prove the bound (68). Any f ∈ E has the expansion f =
∑

j≥1 fjϕj

for some coefficients such that
∑∞

j=1 f
2
j ≤ t2n/(1−γ) and

∑∞
j=1 f

2
j /µj ≤R2. Consequently,

we have

∥f∥∞ = sup
x

∣∣∣ ∞∑
j=1

fjϕj(x)
∣∣∣≤R sup

x

{
2

∞∑
j=1

min
{ t2n
R2(1−γ) , µj

}
ϕ2
j (x)

}1/2

(i)

≤ Rκ
{
2

∞∑
j=1

min
{ t2n
R2(1−γ) , µj

}}1/2
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(ii)

≤ Rκ
√
2n

R(1− γ)

κσ(θ∗)

{
δ2n +

δntn
R
√
1− γ

}
=
{√2nR2(1− γ)δ2n

κσ2(θ∗)

}
κσ(θ∗)

{
1 +

tn
δnR

√
1− γ

}
(iii)

≤ κσ(θ∗)

128

{
1 +

tn
δnR

√
1− γ

}
,

where step (i) uses the fact that ∥ϕj∥∞ ≤ κ by assumption; step (ii) uses the definition of
δn = δn(κσ(θ

∗)); and step (iii) follows from the assumed bound (18).

C.3.2. Proof of Lemma C.5. We first claim that if there is some f ∈H such that J(f)
holds, then we can construct a function g ∈H such that ∥g∥H ≤R, and∣∣⟨g, (Γ̂− Γ)g⟩H

∣∣≥ u2n +
ρ2(g)

2
.(69)

Indeed, if the given function f satisfies ∥f∥H ≤ R, then we are done. Otherwise, we define
the rescaled function g := R f

∥f∥H ∈H, which satisfies ∥g∥H =R. Now observe that

∣∣⟨g, (Γ̂− Γ)g⟩H
∣∣ = R2

∥f∥2H

∣∣⟨f, (Γ̂− Γ)f⟩H
∣∣≥ R2

∥f∥2H

{
u2nmax

{
1,

∥f∥2
H

R2

}
+

ρ2(f)

2

}
≥ u2n +

ρ2(g)

2
,

as claimed.
We now claim that that there must exist some function h with ∥h∥H ≤ R and ρ(h)≤ un

such that
∣∣⟨h, (Γ̂−Γ)h⟩H

∣∣≥ u2
n

2 . Indeed, if the g constructed above satisfies ρ(g)≤ un, then
this function has the desired property. Otherwise, we may assume that ρ(g)> un, and define
h= un

ρ(g)g ∈H. Observe that ∥h∥H ≤ ∥g∥H =R, and ρ(h) = un by construction. Moreover,
since g satisfies the lower bound (69), we have∣∣⟨h, (Γ̂− Γ)h⟩H

∣∣ = u2n
ρ2(g)

∣∣⟨g, (Γ̂− Γ)g⟩H
∣∣≥ u2n

ρ2(g)

{
u2n +

ρ2(g)

2

}
≥ u2n

2
.

Putting together the pieces, we have established that the event B is contained within the event{
Z̃n(un)≥ u2

n

2

}
, as claimed.

C.3.3. Proof of Lemma C.6. As usual, we proceed by first bounding the mean E[Z̃n(un)],
and then establishing concentration around this mean. Since un ≥ tn, by standard properties
of Rademacher complexities, we have

E[Z̃n(un)]≤ un
tn
8

≤ u2n
8
.(70)

Consequently, in order to complete the proof, it suffices to show that

P
[
Z̃n(un)≥ 2E[Z̃n(un)] +

u2
n

4

]
≤ exp

(
− c1n

u2
n

b2R2

)
.(71)

Recall from the proof of Lemma C.4 that the random variable Z̃n(un) is the supremum of
an empirical process defined by the random variables y = (x,x′) and functions of the form
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g(y) = f2(x)− γf(x)f(x′). In order to apply Talagrand’s concentration inequality, we need
to bound ∥g∥∞ and E[g2(Y )] uniformly over the class. We have

∥g∥∞ ≤ (1 + γ)∥f∥2∞ ≤ 2b2R2

where the final inequality uses the facts that γ ≤ 1, and ∥f∥∞ ≤ bR for any function with
∥f∥H ≤R. On the other hand, again using the fact that ∥f∥∞ ≤ bR, we have

E[g2(Y )] = E
[
f2(X)

(
f(X)− γf(X ′)

)2]
≤ b2R2 E

[
f2(X) + γ2f2(X ′)− 2γf(X)f(X ′)

]
(i)

≤ 2b2R2 E
[
f2(X)− γf(X)f(X ′)

]
︸ ︷︷ ︸

ρ2(f)

(ii)

≤ 2b2R2u2n,

where inequality (i) uses the fact that E[f2(X ′)] = E[f2(X)] and γ ≤ 1; and inequality (ii)
uses the fact that ρ2(f)≤ u2n for all functions f in the relevant class.

Consequently, by applying Talagrand’s theorem (cf. equation (3.86) in the book [50]),
there are universal constants c2, c3 such that

P
[
Z̃n(un)≥ 2E[Z̃n(un)] + c2bRun

√
s+ c3b

2R2s
]
≤ exp(−ns).

Setting s= c1
u2
n

b2R2 for a sufficiently small constant c1 yields the claim.

APPENDIX D: AUXILIARY RESULTS FOR THEOREM 3.4

This appendix is devoted to various auxiliary results associated with Theorem 3.4. In Ap-
pendix D.1, we discuss the sample size requirements of the theorem, along with the condi-
tions on the kernel eigenvalues. Appendix D.2 presents constructions of RKHSsHA andHB

as well as MRP families MA and MB . In the remaining subsections, we provide various
technical results used in the construction. Appendix D.3 is devoted to the analysis of MRP
class MA; whereas Appendix D.4 concerns family MB .

D.1. Conditions of Theorem 3.4. In this appendix, we discuss the requirements needed
for our lower bounds to be valid. First, we claim that the sample size conditions required for
the lower bounds in Theorem 3.4, parts (a) and (b), are are weaker than the requirement (18)
for the upper bounds in Theorem 3.1. It is clear that the constraint in part (a) and the first
inequality in constraint (36b) are looser than bound (18). Additionally, the second inequality
in condition (36b) is easy to satisfy if the eigengap (1 − µ2

µ1
) has a constant order and the

uniform bound b and the radius R̄ are not too large. For these reasons, the lower bounds
require even milder conditions on the sample size n.

We also note that the eigengap condition min3≤j≤dn

{√
µj−1 −

√
µj

}
≥ δn

2dn
in Theo-

rem 3.4 is rather mild. For instance, if we consider a kernel whose eigenvalues exhibit α-
polynomial decay (22)—that is, say µj = cj−2α for some constant c > 0 and exponent α> 1

2 .
In this case, we have

√
µj−1 −

√
µj =

√
c
{
(j − 1)−α − j−α

}
=
√
c j−α

{
(1− 1

j
)−α − 1

}
≥
√
c j−αα

j
=
√
µj

α

j
≥

√
µj

2j
.
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1 − p1 − p
p

x−

p

x+

(a) Base Markov chain P0(p).

1 − p − Δp1 − p − Δp

p + Δp

x−

p + Δp

x+

(b) Construction of PA(p,∆p).

1 − p − Δp1 − p + Δp

p + Δp

x−

p − Δp

x+

(c) Construction of PB(p,∆p).

Fig 6. Two-state MRP instances P0, PA and PB . The MRP instances are parameterized by
scalars p ∈

[
0, 12
]

and ∆p ∈ [−p, p]. The parameters are chosen so as to ensure that all edges
are labeled with valid probabilities.

If j ≤ dn, then √
µj ≥ δn. Therefore, √µj−1−

√
µj ≥ δn

2dn
for any j ≤ dn and the assumption

is satisfied.

Finally, we comment on the critical inequality (33), and show that in Regime B, by replac-
ing {µj}∞j=1 with {µj(P)}∞j=1, we would get a smaller critical radius. We recall from defi-
nition (44b) of MB that any I (P, rB, γ) ∈MB satisfies µj(P) ≤ µj for any j ≥ 2. Since
the statistical dimension dn =max

{
j | µj ≥ δ2n

}
, we have min

{
µj(P), δ2n

}
≤min

{
µj , δ

2
n

}
for any j ∈Z+ as long as dn ≥ 2. Recall that δn is the smallest positive solution to inequal-
ity (33), therefore,√√√√ ∞∑

j=1

min
{µj(P)

δ2n
,1
}
≤

√√√√ ∞∑
j=1

min
{µj

δ2n
,1
}
≤
√
n
R̄ (1− γ)

2σ̄
δn .

In other words, δn satisfies the critical inequality defined by {µj(P)}∞j=1. Hence, δn ≥ δn(P),
where δn(P) is the critical radius induced by {µj(P)}∞j=1. In this way, LB(R̄, σ̄, δn) further
implies another lower bound ∥θ̂− θ∗∥2

µ(P) ≥ c1 R̄
2δ2n(P), as claimed in Section 4.2.1.

D.2. Constructions of MRP instances. In this part, we present the constructions of
RKHSs and MRP families used in the lower bound proof, and verify the claims (45), (47a)
and (47b) in Section 4.2.2. In particular, Appendices D.2.1 and D.2.2 introduce the general
structure of the MRP instances we devised. Appendix D.2.3 is devoted to the design of two
RKHSs. In Appendix D.2.4, we define two model families MA and MB by specifying the
parameters in our MRP construction in Appendix D.2.2.

D.2.1. Construction of simple two-state MRPs. As a warm-up, we first construct a sim-
ple two-state Markov chain and two perturbed variants of it. Each variant is the basic building
block that underlies our full-scale “hard” instances in MA or MB . Denote the states by x+
and x−. Given a scalar p ∈

[
0, 12
]
, the base Markov chain is defined by the 2× 2 transition

matrix

P0 ≡P0(p) :=

(
1− p p
p 1− p

)
.(72a)

See Figure 6a for an illustration of the transition dynamics of the base model.
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We further define the perturbed variants PA and PB of model P0. In addition to the
parameter p, we introduce another scalar ∆p ∈ [−p, p]. The Markov chains are constructed
as follows:

PA ≡PA(p,∆p) :=

(
1−p−∆p p+∆p
p+∆p 1−p−∆p

)
,

PB ≡PB(p,∆p) :=

(
1−p+∆p p−∆p
p+∆p 1−p−∆p

)
.

(72b)

Panels (b) and (c) in Figure 6 represent these two processes respectively.
Consider a reward function r given by r(x+) := r and r(x−) := −r where r ∈ R is a

scalar. Let θ0, θA and θB be the value functions associated with transition kernels P0, PA

and PB . Then θA and θB can be viewed as perturbations of θ0 in two different directions.
Specifically, we perform calculations and find that θ0 = (1−γ+2γp)−1r and the differences
∆θA = θA − θ0 and ∆θB = θB − θ0 satisfy the relations

∆θA(x+) =−∆θA(x−) and ∆θB(x+) =∆θB(x−).(73)

In the sequel, we construct full-scale MRP instances using the Markov chains PA and PB .

D.2.2. Construction of MRPs over state space X = [0,1). In this part, we assemble K
different two-state Markov chains {P(k)}Kk=1 into a full-scale model P over state space X =

[0,1). In our constructions, matrix P(k) takes the form of PA

(
p,∆p(k)

)
in Regime A and

PB

(
p,∆p(k)

)
in Regime B, where the parameters K , p and {∆p(k)}Kk=1 will be specified

later.
We evenly partition the state space X = [0,1) into 2K intervals

∆
(k)
+ :=

[
k−1
2K , k

2K

)
and ∆

(k)
− :=

[
1
2 +

k−1
2K , 12 +

k
2K

)
for k = 1,2, . . . ,K.(74)

For each index k ∈ [K], the dynamics of P on intervals ∆(k)
+ and ∆

(k)
− follow the local model

P(k). With slight abuse of notation, we denote the two states of Markov chain P(k) by x+
and x− for any k ∈ [K]. The transition kernel P is then defined as 1

P(x′ | x) :=



2K P(k)(x+ | x+) if x,x′ ∈∆
(k)
+ ,

2K P(k)(x− | x+) if x ∈∆
(k)
+ , x′ ∈∆

(k)
− ,

2K P(k)(x− | x−) if x,x′ ∈∆
(k)
− ,

2K P(k)(x+ | x−) if x ∈∆
(k)
− , x′ ∈∆

(k)
+ ,

0 otherwise.

(75)

Figure 7 illustrates our construction of model P .
In the full-scale MRP I (P, r, γ), we take a reward function

r(x) := r
(
1
{
x ∈ [0, 12)

}
− 1
{
x ∈ [12 ,1)

})
(76)

1A technical side-comment: note that the Markov chain (75) is not ergodic. However, this issue can be reme-
died with a slight modification of the transition kernel P . Let µ̃ be a stationary distribution of P . We fix a number
ϵ ∈ (0,1). At each time step, let the Markov chain follow P with probability 1− ϵ, and transit to a next state ac-
cording to µ̃ with probability ϵ. This procedure defines a new transition kernel P̃(· | x) := ϵµ̃(·)+(1−ϵ)P(· | x),
which induces a new Markov chain that is ergodic, and has a unique stationary distribution. Since ϵ > 0 can be
chosen arbitrarily close to zero, we can recover statements about the original model in this way. The ϵ-modification
would induce unnecessary clutter, so that we focus on model (75) in the following discussion.
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with a scalar r ∈R. By our construction, the transition kernel P and reward function r pro-
duce a value function θ∗ that is piecewise constant over intervals ∆(k)

+ and ∆
(k)
− . Moreover,

we have

θ∗(x) =

{
θ(k)(x+) if x ∈∆

(k)
+ ,

θ(k)(x−) if x ∈∆
(k)
− ,

(77)

where θ(k) := (I− γP(k))−1r ∈R2 is the value vector given by transition matrix P(k) and
reward vector r = [r,−r]⊤.

We consider the form of the full-scale value function θ∗ when taking P(k) = P0(p),
PA

(
p,∆p(k)

)
or PB

(
p,∆p(k)

)
. If we set P(k) = P0(p), then the value function is given

by

θ∗(x) = θ∗0(x) := (1− γ + 2γp)−1 r(x).(78)

We refer to θ∗0 as the base value function. If P(k) = PA

(
p,∆p(k)

)
, then due to equa-

tion (73), we have θ∗ = θ∗0 + ∆θ∗ with function ∆θ∗ satisfying ∆θ∗(x) = −∆θ∗(x + 1
2)

for any x ∈ [0, 12). When P(k) = PB

(
p,∆p(k)

)
, the value function θ∗ admits a decompo-

sition θ∗ = θ∗0 +∆θ∗ with ∆θ∗(x) = ∆θ∗(x + 1
2) for any x ∈ [0, 12). In the following, we

construct function spaces HA and HB of which the elements possess these properties.

1

1
2

Δ(1)−

⋯⋯
[

)x+ x−

P(1)

x+ x−
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(a) Partition of state space X = [0,1).
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(b) Construction of transition kernel P over state space X = [0,1) using 2-state
Markov chains P(1),P(2), . . . ,P(K).

Fig 7. Embedding of two-state Markov chains {P(k)}Kk=1 into state space X = [0,1). Up:

partition of state space X into intervals {∆(k)
+ ,∆

(k)
− }Kk=1. Bottom: the transitions on intervals

∆
(k)
+ and ∆

(k)
− follow a local Markov chain P(k).
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Fig 8. Construction of functions {ϕA,j}∞j=1 and {ϕB,j}∞j=1. Left: Basis functions
ϕA,1, ϕA,2, . . . , ϕA,6. Right: Basis functions ϕB,1, ϕB,2, . . . , ϕB,6.

D.2.3. Constructing the Hilbert spacesHA andHB . Given a sequence {µj}∞j=1 of non-
negative numbers, we construct two RKHSs HA and HB of functions with domain X =
[0,1), such that both the associated kernels have eigenvalues {µj}∞j=1 under the Lebesgue
measure µ. Our construction is designed to produce kernels that are especially amenable to
analysis, and can easily connect to the MRPs defined in equation (75). In particular, we lever-
age the Walsh system, an orthonormal basis of L2(µ) that can represent discrete functions
conveniently. For any j ∈N, the j-th Walsh function is given by

Wj(x) := (−1)
∑∞

i=0 kixi+1 for j =
∞∑
i=0

ki2
i, x= x0 +

∞∑
i=1

xi2
−i

with ki, xi ∈ {0,1} and x0 ∈ Z. Specifically, the first Walsh function takes the form
W1(x) = 1

{
x ∈ [0, 12)

}
− 1
{
x ∈ [12 ,1)

}
.

Below we construct two groups of functions {ϕA,j}∞j=1 and {ϕB,j}∞j=1 that are bases of
HA and HB respectively:

ϕA,j(x) := W2j−1(x) =Wj−1(2x)W1(x) for j = 1,2,3, . . . and(79a)

ϕB,j(x) :=

{
W1(x) if j = 1,

W2(j−1)(x) =Wj−1(2x) if j = 2,3, . . ..
(79b)

See Figure 8 for an illustration of the top 6 basis functions in each group. Based on {ϕA,j}∞j=1
and {ϕB,j}∞j=1, we define the kernel functions KA and KB as

Kι(x, y) :=

∞∑
j=1

µj ϕι,j(x)ϕι,j(y) for ι=A or B(80)

and let HA and HB be the RKHSs induced by KA and KB .
The function classes {ϕA,j}∞j=1 and {ϕB,j}∞j=1 above are both orthonormal in L2(µ). In-

deed, we have
∫
X ϕι,i(x)ϕι,j(x)µ(dx) = 1{i= j} for ι=A or B and any i, j ∈Z+. Hence,

the kernels KA and KB have eigenpairs {(µj , ϕA,j)}∞j=1 and {(µj , ϕB,j)}∞j=1 associated with
the Lebesgue measure µ.

Our choice of bases {ϕA,j}∞j=1 and {ϕB,j}∞j=1 is especially tailored to the MRP construc-

tion in Appendix D.2.2. Suppose K is a power of 2 and let {∆(k)
+ ,∆

(k)
− }Kk=1 be a partition

of state space X = [0,1) given in equation (74). Then for any function f that is piecewise
constant with respect to the partition and satisfies f(x) = −f(x+ 1

2) for any x ∈
[
0, 12
)
, it
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can always be linearly expressed by functions {ϕA,1, . . . , ϕA,K}. Similarly, the function set
{ϕB,2, . . . , ϕB,K} is capable of representing any discrete function f that is adapted to the
partition and satisfies f(x) = f(x+ 1

2) for any x ∈
[
0, 12
)
.

D.2.4. Two families of MRPs. We now construct a family {Im}Mm=1 of MRP instances
using the transition kernel and reward function defined in equations (75) and (76), with value
functions belonging to eitherHA orHB . Recall our definition dn =max

{
j | µj ≥ δ2n

}
of the

effective dimension (at sample size n) of the underlying kernel class. Consider the Boolean
hypercube {0,1}dn−1, and let {αm}Mm=1 be a 1

4 -(maximal) packing of it with respect to the
(rescaled) Hamming metric

ρH(α,α′) :=
1

dn − 1

dn−1∑
k=1

1{αk ̸= α′
k}.(81)

It is known from standard results on metric entropy (e.g., see Example 5.3 in the book [50])
that there exists such a set with log cardinality lower bounded as logM ≥ dn

10 . Using this
packing of the Boolean hypercube, we now show how to construct the MRP instance Im

based on the binary vector αm.

In either Regime A or B, the MRP instances {Im}Mm=1 share the same reward function
r(x) = rA(x) or rB(x). Each model Im has a transition kernel Pm that lies within a neigh-
borhood of a base Markov chain P0. The difference between Pm and P0 is encoded by vector
αm. Specifically, we pick a transition kernel Pm such that the difference in value functions
θ∗m − θ∗0 is a linear combination of functions {ϕA,j}dn

j=2 or {ϕB,j}dn

j=2, with vector αm deter-
mining the linear coefficients. Here, θ∗0 is the base value function given by equation (78).

In our constructions below, we take K := 2⌈log2 dn⌉. It is ensured that the functions
{ϕA,j}dn

j=1 and {ϕB,j}dn

j=1 are piecewise constant with respect to the partition
{
∆

(k)
+ ,∆

(k)
−
}K
k=1

.
Recall from definition (75) that transition kernel Pm is determined by local models
{P(k)

m }Kk=1. In the sequel, we specify the choices of {P(k)
m }Kk=1 so that the value function

θ∗m has the desired form.

Regime A. We first construct MRP instances {Im}Mm=1 that belong to the model class MA.
In order that the regularity condition ∥rA∥∞ ≤ 1 holds, we simply set parameter r := 1 in
equation (76) so that the reward function rA(x) =W1(x).

In our design of the transition kernel Pm, the local Markov chains are P(k)
m :=PA

(
p,∆p

(k)
m

)
where PA is given in equation (72b) and the parameter p is chosen as p := 3(1−γ)

γ . We remark
that the uniform distribution µ is stationary under model Pm, so we pick µm = µ(Pm) = µ.
We take parameters {∆p

(k)
m }Kk=1 such that the value function θ∗m of MRP Im satisfies

θ∗m = θ∗0 −
2γ

(1− γ + 2γp)2
fm,(82)

where θ∗0 = (1− γ + 2γp)−1W1 and

fm(x) :=

√
p (1− p)

120n

dn∑
j=2

α(j−1)
m ϕA,j(x).(83)

In order to do so, we set

∆p(k)m :=
1− γ + 2γp

1− γ + 2γp− 2γfm(xk)
fm(xk) for m ∈ [M ] and k ∈ [K](84)
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in the local Markov chain P
(k)
m = PA

(
p,∆p

(k)
m

)
. Recall from equation (77) that θ∗m(x) =

θ
(k)
m (x+) = −θ

(k)
m (x−) for any x ∈ ∆

(k)
+ , where θ

(k)
m ∈ R2 is the value vector induced by

model P(k)
m and reward vector r = [1,−1]⊤. Under our choice of ∆p

(k)
m in equation (84), the

value function θ∗m has the desired form as in equation (82).

Regime B. We now construct MRP instances {Im}Mm=1 in family MB . In this scenario,
we take the parameter p := 1

8 in local models P
(k)
m := PB

(
p,∆p

(k)
m

)
and r := p+ 1−γ

2γ in
the definition (76) of reward function so that rB(x) =

(
p+ 1−γ

2γ

)
W1(x). Moreover, we set

∆p
(k)
m := fm(xk) in model P(k)

m =PB

(
p,∆p

(k)
m

)
, where

fm(x) :=
p

25
√
n

dn∑
j=2

α(j−1)
m ϕB,j(x)(85)

and xk is any point in interval ∆+
k or ∆−

k . The value function θ∗m then satisfies

θ∗m = θ∗0 +
1

1− γ
fm .(86)

We observe that in this case, the transition kernel Pm has a stationary distribution

µm(x) :=

{
1 + fm(x)

p if x ∈∆+
k ,

1− fm(x)
p if x ∈∆−

k .
(87)

The measure µm is not the uniform distribution µ; however, our construction ensures that
dµm

dµ (x)≥ 1
2 . See Appendix D.4.1 for the proof of this claim.

We claim that both of our constructions yield MRPs that belong to the desired classes:

LEMMA D.1. The previously described constructions yield MRP instances Im such that
{Im}Mm=1 ⊂MA in Regime A, and {Im}Mm=1 ⊂MB in Regime B.

We prove the Regime A claim in Appendix D.3.1, and the Regime B claim in Appendix D.4.2.

We now need to establish upper bounds on the pairwise KL divergences, and lower bounds
on the pairwise L2(µ)-distances, as stated informally in equations (47). The precise state-
ments are as follows:

LEMMA D.2. For either of the two classes (MA in Regime A, or MB in Regime B), our
construction ensures that

DKL
(
P1:n
m

∥∥P1:n
m′

)
≤ dn

40
for any m,m′ ∈ [M ].(88)

See Appendices D.3.2 and D.4.3, respectively, for the proofs corresponding to the classes
MA and MB .

LEMMA D.3. Our construction ensures that there exists a universal constant c′1 such
that

min
m̸=m′

∥∥θ∗m − θ∗m′

∥∥
µ
≥ c′1

√
c R̄δn.(89)

The claim holds for both {Im}Mm=1 ⊂MA and {Im}Mm=1 ⊂MB .

This claim is proved in Appendices D.3.3 and D.4.4 for MA and MB respectively.
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D.3. Proofs of auxiliary results in Regime A. In this part, Appendix D.3.1 presents
the proof of Lemma D.1, which shows the well-definedness of our MRP instances and ver-
ifies that they belong to the model family MA. Appendix D.3.2 is devoted to the proof of
Lemma D.2, which provides an upper bound on the pairwise KL distances in our construc-
tion. On the other hand, Appendix D.3.3 provides the proof of Lemma D.3, which lower
bounds the pairwise distances between the value functions in our model family.

D.3.1. Proof of Lemma D.1. We verify the conditions in the definition (44a) of family
MA. In order that our constructed MRP instances Im ∈MA for any m ∈ [M ], we check the
constraints in equation (44a) one by one. We first note that θ∗m ∈ HA by our construction.
As for condition (ii) in definition (44a), we recall that all models {Im}Mm=1 ⊂ MA have
Lebesgue measure µ as the common stationary distribution, thus the covariance operator
Σcov has eigenpairs {(µj , ϕA,j)}∞j=1, where {µj}∞j=1 are the pre-specified parameters and
{ϕA,j}∞j=1 are the bases of HA defined in equation (79a). Since supj∈Z+

∥ϕA,j∥∞ = 1≤ κ,
condition (ii) is satisfied. In the sequel, we only need to verify inequalities (32b). Specifically,
we will prove that for each Im, the following properties hold:

• The Bellman residual variance satisfies σ2(θ∗m)≤ σ̄2, and;
• The norms satisfy max

{
∥θ∗m − rA∥HA

, 2∥θ
∗
m∥∞
b

}
≤ R̄.

Before proving the two claims above, we first develop upper bounds on ∥fm∥∞ and∣∣∆p
(k)
m

∣∣, which are crucial in our estimations below. We claim that

∥fm∥∞ ≤ p

9
and

∣∣∆p(k)m

∣∣≤ p

8
for any k ∈ [K] and m ∈ [M ] .(90)

In fact, by using the definition of fm in equation (82) and the fact that ∥ϕA,j∥∞ ≤ κ, we find
that

∥fm∥∞ ≤
√

p (1− p)

120n

dn∑
j=2

∥ϕA,j∥∞ ≤ κdn

√
p

120n
.

The critical inequality (33) ensures dn ≤ n
{ R̄δn(1−γ)

κσ̄

}2, and therefore

∥fm∥∞ ≤ κn
{R̄δn(1− γ)

κσ̄

}2
√

p

120n

(i)

≤
√

1
30 p (1− γ)≤ p

9
,

where we have used condition (36a) in the step (i). We plug the inequality ∥fm∥∞ ≤ p
9 into

the definition of ∆p
(k)
m in equation (84). It follows that∣∣∆p(k)m

∣∣= 1− γ + 2γp

1− γ + 2γp− 2γfm(xk)
|fm(xk)| ≤

1− γ + 2γp

1− γ + 2γp− 2γ(p/9)
(p/9)≤ p

8
.

Upper bound on σ2(θ∗m). We consider the condition σ(θ∗m)≤ σ̄. Recall that the MRP Im

consists of K local models, each is determined by the transition matrix P
(k)
m =PA

(
p,∆p

(k)
m

)
and reward vector r = [1,−1]⊤. The Bellman residual variance σ2(θ∗m) of the full-scale MRP
Im is the average of those of the small local MRPs. Let θ(k)

m be the value function associated
with the k-th local MRP. We use some algebra and find that

σ2
(
θ(k)
m

)
=

4γ2
(
p+∆p

(k)
m

)(
1− p−∆p

(k)
m

)(
1− γ + 2γp+ 2γ∆p

(k)
m

)2 .
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Since
∣∣∆p

(k)
m

∣∣≤ p/8 and p= 3(1−γ)
γ , we have

σ2
(
θ(k)
m

)
≤ (4γ2) (p+ p/8) (1− p− p/8)

(1− γ + 2γp− 2γ(p/8))2
≤ 1 + γ

5(1− γ)
≤ σ̄2.

By taking the average of σ2
(
θ
(k)
m

)
over indices k ∈ [K], we conclude that

σ2(θ∗m) =
1

K

K∑
k=1

σ2
(
θ(k)
m

)
≤ σ̄2.

Upper bounds on ∥θ∗m−rA∥HA
and ∥θ∗m∥∞. We first consider the RKHS norm ∥θ∗m − rA∥HA

.
Recall from equations (76) and (82) that the reward and value functions rA and θ∗m are

rA = ϕA,1 and

θ∗m =
1

1− γ + 2γp
ϕA,1 −

2γ

(1− γ + 2γp)2

√
p (1− p)

120n

dn∑
j=2

α(j−1)
m ϕA,j .

We take a shorthand η := 2γ
(1−γ+2γp)2

√
p (1−p)
120 . Note that {√µj ϕA,j}∞j=1 is an orthonormal

basis in RKHS HA and δ2n ≤ µj for any j ∈ [dn]; as a consequence, we have

∥θ∗m − rA∥2HA
=
{ γ (1− 2p)

1− γ + 2γp

}2 1

µ1
+

η2

n

dn∑
j=2

(α
(j−1)
m )2

µj
≤
{ γ (1− 2p)

1− γ + 2γp

}2 1

µ1
+

η2 dn
nδ2n

.

(91)

Since p= 3(1−γ)
γ , the first term in the upper bound above satisfies{ γ (1− 2p)

1− γ + 2γp

}2 1

µ1
=
{ 7γ − 6

7(1− γ)

}2 1

µ1
≤
{ γ

7(1− γ)
√
µ1

}2
≤
{6R̄

7

}2
,(92a)

where we have used the relation R̄ ≥ γ
6(1−γ)

√
µ1

. As for the second term in the right hand

side of inequality (91), we recall that the critical inequality (33) ensures dn

nδ2n
≤
{ R̄(1−γ)

σ̄

}2,
therefore,

η2 dn
nδ2n

≤ R̄2
{
η(1− γ)/σ̄

}2
.

Combining the definition of η, the equality p= 3(1−γ)
γ and the relation σ̄2 ≥ 1+γ

5(1−γ) , we find
that η(1− γ)/σ̄ ≤ 1

98 . It follows that

η2 dn
nδ2n

≤
{ R̄

98

}2
.

Plugging inequalities (92) into (91) yields ∥θ∗m − rA∥HA
≤ R̄.

We now estimate the sup-norm ∥θ∗m∥∞. We use the inequality ∥fm∥∞ ≤ p
9 and find that

∥θ∗m∥∞ ≤ 1

1− γ + 2γp
∥ϕA,1∥∞ +

2γ

(1− γ + 2γp)2
∥fm∥∞

≤ 1

1− γ + 2γp
+

2γ

(1− γ + 2γp)2
(p/9)≤ 1

6(1− γ)
.

Since R̄≥ 2
3b(1−γ) , we have 2∥θ∗

m∥∞
b ≤ R̄.

Integrating the two parts, we conclude that max
{
∥θ∗m − rA∥HA

, 2∥θ
∗
m∥∞
b

}
≤ R̄.
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D.3.2. Proof of Lemma D.2. Since the n samples {(xi, x′i)}ni=1 are i.i.d., we have

DKL
(
P1:n
m′

∥∥P1:n
m

)
= nDKL(Pm′ ∥ Pm) .

Thus, the remainder of our proof focuses on bounding DKL(Pm′ ∥ Pm), for an arbitrary pair
m,m′ ∈ [M ].

From Jensen’s inequality and the concavity of the logarithm, the KL divergence can be
upper bounded by the χ2-divergence—that is

DKL(Pm′ ∥ Pm)≤ χ2(Pm′ ∥ Pm) =

∫
X 2

µ(x)

(
Pm′(x′ | x)−Pm(x′ | x)

)2
Pm(x′ | x)

dxdx′.

Recall our shorthand notation K = 2⌈log2 dn⌉, where the kernel dimension dn was previously
defined as dn = max

{
j | µj ≥ δ2n

}
. Since our construction of transition model Pm is an

ensemble of K blocks {P(k)
m }Kk=1, each involving two states, the χ2-divergence can be written

as the sum

χ2(Pm′ ∥ Pm) =
1

K

K∑
k=1

χ2
(
P

(k)
m′

∥∥P(k)
m

)
.(93)

The local χ2-divergence is defined as

χ2
(
P

(k)
m′

∥∥P(k)
m

)
:=

∑
x,x′∈{x+,x−}

µ(x)

(
P

(k)
m′ (x′ | x)−P

(k)
m (x′ | x)

)2
P

(k)
m (x′ | x)

where µ :=
[
1
2 ,

1
2

]
is the stationary distribution. We recall from equation (72b) the expression

of local model P(k)
m =PA

(
p,∆p

(k)
m

)
and derive that

χ2
(
P

(k)
m′

∥∥P(k)
m

)
=

(
∆p

(k)
m′ −∆p

(k)
m

)2(
p+∆p

(k)
m

)(
1− p−∆p

(k)
m

) .(94)

We develop upper and lower bounds on the numerator and denominator separately.
We first consider the numerator

(
∆p

(k)
m′ −∆p

(k)
m

)2. Following some algebra, we find that

∆p
(k)
m′ −∆p(k)m =

fm(xk)− fm′(xk)(
1− 2γ fm′ (xk)

1−γ+2γp

)(
1− 2γ fm(xk)

1−γ+2γp

) ,
where xk is any point in interval ∆(k)

+ . It was shown in the bound (90) that ∥fm∥∞ ≤ p/9,
therefore, min

{
1− 2γ fm′ (xk)

1−γ+2γp ,1−
2γ fm(xk)
1−γ+2γp

}
≥ 19

21 . It follows that(
∆p

(k)
m′ −∆p(k)m

)2 ≤ 2
(
fm(xk)− fm′(xk)

)2
.(95a)

As for the numerator
(
p+∆p

(k)
m

)(
1− p−∆

(k)
m

)
in the right hand side of equality (94), we

have proved in the bound (90) that
∣∣∆p

(k)
m

∣∣≤ p/8, so that(
p+∆p(k)m

)(
1− p−∆(k)

m

)
≥ 7

8 p(1− p) .(95b)

Combining inequalities (95) with equation (94) yields

χ2
(
P

(k)
m′

∥∥P(k)
m

)
≤

3
(
fm′(xk)− fm(xk)

)2
p(1− p)

.(96)
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We plug the bound (96) into equation (93) and find that

χ2(Pm′ ∥ Pm)≤ 3

p(1− p)

{
1

K

K∑
k=1

(
fm′(xk)− fm(xk)

)2}
(i)
=

3

p(1− p)

∫
X

(
fm′(x)− fm(x)

)2
dx=

3

p(1− p)
∥fm′ − fm∥2µ .

Here step (i) is due to the property that fm(x) = fm(xk) for any x ∈∆+
k and fm(x) =−fm(xk)

for any x ∈∆−
k . Regarding the L2(µ)-distance ∥fm−fm′∥µ, we leverage the orthonormality

of basis functions {ϕA,j}dn

j=1 in L2(µ) and find that

∥fm′ − fm∥2µ =
p(1− p)

120n

dn∑
j=2

(
α(j−1)
m − α

(j−1)
m′

)2 ≤ p(1− p)
dn

120n
.

Therefore, we have

χ2(Pm′ ∥ Pm)≤ dn
40n

.

Putting together the pieces yields

DKL
(
P1:n
m′

∥∥P1:n
m

)
≤ n χ2(Pm′ ∥ Pm)≤ dn

40
,

as claimed in the lemma statement.

D.3.3. Proof of Lemma D.3. We now lower bound the L2(µ)-norm between the value
functions of different models in our family. Recall the expression of value function θ∗m in
equation (82). We find that

θ∗m = θ∗0 +
η√
n

dn∑
j=2

α(j−1)
m ϕA,j

where η = 2γ
(1−γ+2γp)2

√
p (1−p)
120 . Since {ϕA,j}∞j=1 is an orthonormal basis in L2(µ), we can

write

∥θ∗m′ − θ∗m∥2µ =
η2

n

dn∑
j=2

(
α
(j−1)
m′ − α(j−1)

m

)2
.

By our construction,
{
αm

}M
m=1

is a 1
4 -packing of the Boolean hypercube {0,1}dn−1 with

respect to the rescaled Hamming distance, therefore,
dn∑
j=2

(
α
(j−1)
m′ − α(j−1)

m

)2 ≥ dn − 1

4
.

We use the conditions p= 3(1−γ)
γ , γ ∈ [0.9,1) and σ̄2 ≤ 1+γ

1−γ , and find by some algebra that

η ≥ c′2
1− γ

√
1 + γ

1− γ
≥ c′2 σ̄

1− γ

where c′2 > 0 is a universal constant. Combining the inequalities, we obtain

∥θ∗m′ − θ∗m∥µ ≥ c′1 σ̄

1− γ

√
dn
n

for another universal constant c′1 > 0. By further using the regularity condition (34), we can
derive inequality (89) in the lemma statement.
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D.4. Proofs of auxiliary results in Regime B. This section contains proofs of auxiliary
results that underlie the minimax lower bound over model family MB . Specifically, Ap-
pendix D.4.1 proves the density ratio condition (45), that is, dµm

dµ (x) ≥ 1
2 . Appendix D.4.2

is devoted to the proof of Lemma D.1, which shows that our constructed models {Im}Mm=1

belong to the family MB . Appendix D.4.3 proves Lemma D.2, which upper bounds the pair-
wise KL-divergence. Appendix D.4.4 presents the proof of Lemma D.3, which estimates the
pairwise distance in value functions.

D.4.1. Proof of density ratio condition. We prove the density ratio condition (45), i.e.
dµm

dµ (x) ≥ 1
2 . Recall our definition of fm in equation (85). Since supj≥1∥ϕB,j∥∞ ≤ κ, we

have

∥fm∥∞ ≤ κ p dn
25
√
n

(i)

≤ n
{R̄δn(1− γ)

κσ̄

}2 κ p

25
√
n

(ii)

≤ p (1− γ)

2
.(97)

Here step (i) is due to the critical inequality (33) and in step (ii) we have used the inequality
R̄2δ2n ≤ 12 κσ̄2

(1−γ)
√
n

in condition (36b). We plug inequality (97) into the expression of stationary

distribution µm in equation (87). It follows that dµm

dµ (x)≥ 1
2 , as claimed.

D.4.2. Proof of Lemma D.1. By our construction, condition θ∗m ∈HB in equation (44b)
naturally holds. In the sequel, we verify the remaining constraints in the definition of MB ,
including

• the regularity condition γ∥θ∗m∥µm
≤1 and the Bellman residual variance bound σ2(θ∗m)≤σ̄2,

• the norm condition max
{
∥θ∗m − r∥HB

, 2∥θ
∗
m∥∞
b

}
≤ R̄,

• the property that the covariance operator Σcov(Pm) has eigenpairs
{(

µj(Pm), ϕj(Pm)
)}∞

j=1

with µj(Pm)≤ µj for j ≥ 2 and supj
∥∥ϕj(Pm)

∥∥
∞ ≤ 2 = κ.

Upper bounds on γ∥θ∗m∥µm
and σ2(θ∗m). The MRP Im consists of K blocks, each is a

small local MRP determined by the transition matrix P
(k)
m = PB

(
p,∆p

(k)
m

)
and a reward

vector r =
{
p+ 1−γ

2γ

}
[1,−1]⊤. The stationary distribution of P(k)

m takes the form

µ(k)
m =

[
1
2 +

∆p(k)
m

2p , 12 −
∆p(k)

m

2p

]
.(98)

The µ
(k)
m -weighted norm of value function θ

(k)
m and the variance term σ2(θ

(k)
m ) satisfy

γ2
∥∥θ(k)

m

∥∥2
µ

(k)
m

=
1

4
+

γ (1− γ + γp)

p (1− γ)2
(
∆p(k)m

)2 and

σ2(θ(k)
m ) =

1− p

p

{
p2 −

(
∆p(k)m

)2}≤ p (1− p) .

The squared L2(µm)-norm of the full-scale value function θ∗m is the average of
∥∥θ(k)

m

∥∥2
µ

(k)
m

over indices k ∈ [K]. We use the relation ∆p
(k)
m = fm(xk) and find that

γ2∥θ∗m∥2µm
=

1

4
+

1

K

K∑
k=1

γ (1− γ + γp)

p (1− γ)2
f2
m(xk) =

1

4
+

γ (1− γ + γp)

p (1− γ)2
∥fm∥2µ .(99a)

Due to the orthonormality of bases {ϕB,j}dn

j=2 in L2(µ), we have

∥fm∥µ =
p

25
√
n
∥αm∥2 ≤

p

25

√
dn
n
.
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According to the critical inequality (33), it holds that

∥fm∥µ ≤ p

25

√
dn
n

≤ p

25

{R̄δn(1− γ)

κσ̄

} (i)

≤ 2

5
p (1− γ) .(99b)

In step (i), we have used the inequality R̄δn ≤ 10 κσ̄, which is implied by condition (36b).
We plug inequality (99b) into equation (99a) and conclude that γ∥θ∗m∥µm

≤ 1. Therefore, the
regularity condition in Regime B is satisfied.

Similarly, we calculate the variance term σ2(θ∗m) by taking the average of
{
σ2(θ

(k)
m )
}K
k=1

.
It follows that σ2(θ∗m) ≤ p (1 − p). Since σ̄2 ≥ 1

8 = p, we have σ(θ∗m) ≤ σ̄, as required by
equation (32b).

Upper bounds on ∥θ∗m−rB∥HB
and ∥θ∗m∥∞. We first consider the RKHS norm ∥θ∗m − rB∥HB

.
Recall that the reward and value functions rB and θ∗m take the form

rB =
{
p+

1− γ

2γ

}
ϕB,1 ,

θ∗m =
1

2γ
ϕB,1 +

1

1− γ
fm =

1

2γ
ϕB,1 +

p

25(1− γ)
√
n

dn∑
j=2

α(j−1)
m ϕB,j .

Since {√µj ϕB,j}∞j=1 is an orthonormal basis of HB , we use the property that µj ≥ δ2n for
any j ≤ dn and find that

∥θ∗m − rB∥2HB
=

(12 − p)2

µ1
+

p2

252 (1− γ)2 n

dn∑
j=2

(α
(j−1)
m )2

µj
≤

(12 − p)2

µ1
+

p2 dn
252 (1− γ)2 nδ2n

.

The critical inequality (33) ensures dn

nδ2n
≤
{ R̄(1−γ)

κσ̄

}2 and implies

∥θ∗m − rB∥2HB
≤

(12 − p)2

µ1
+

p2

252κ2σ̄2
R̄2 ≤ 9

64µ1
+

R̄2

252
≤ R̄2 ,(100a)

where we have used the properties 1
8 = p≤ σ̄2 ≤ 1, κ≥ 1 and 1√

µ1
≤ 2R̄.

As for the upper bound on sup-norm ∥θ∗m∥∞, we apply the estimation of ∥fm∥∞ in in-
equality (97) and find that

∥θ∗m∥∞ ≤ 1
2γ ∥ϕB,1∥∞ + 1

1−γ ∥fm∥∞ ≤ 1
2γ + p

2 ≤
1
γ .(100b)

Therefore, it holds that 2∥θ∗
m∥∞
b ≤ R̄.

Combining inequalities (100a) and (100b), we conclude that

max
{
∥θ∗m − rB∥HB

, 2∥θ
∗
m∥∞
b

}
≤ R̄.

Analysis of eigenpairs
{(

µj(Pm), ϕj(Pm)
)}∞

j=1
. Recall that Σcov(Pm) is the covariance

operator of kernel KB associated with distribution µm = µ(Pm),
{
µj(Pm)

}∞
j=1

are the
eigenvalues of Σcov(Pm) arranged in non-increasing order, and ϕj(Pm) is the eigenfunc-
tion corresponding to µj(Pm). In the following Lemma D.4, we develop upper bounds on
the eigenvalues and the sup-norms of the eigenfunctions.

LEMMA D.4. Under our construction of kernel KB and MRP instances {Im}Mm=1 ⊂MB

in Regime B, for any m ∈ [M ], the eigenpairs
{(

µj(Pm), ϕj(Pm)
)}∞

j=1
satisfy the claims

below:

(a) It holds that µj(Pm)≤ µj for any j ≥ 2.
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(b) Suppose min3≤j≤dn

{√
µj−1 −

√
µj

}
≥ δn

2dn
and the sample size n is sufficiently

large such that condition (36b) holds. Then the eigenfunctions
{
ϕj(Pm)

}∞
j=1

satisfy
supj∈Z+

∥∥ϕj(Pm)
∥∥
∞ ≤ 2.

We establish the proof of Lemma D.4 by first connecting the eigenpairs
{(

µj(Pm), ϕj(Pm)
)}∞

j=1

to the spectrum of an arrowhead matrix, and then developing the desired bounds based on
properties of the matrix. See Appendix E.2 for the details.

D.4.3. Proof of Lemma D.2. Similar to the proof in Appendix D.3.2, we also upper
bound the KL-divergence DKL

(
P1:n
m′

∥∥P1:n
m

)
by the average of χ2-divergences between local

models P(k)
m′ and P

(k)
m . The calculation of local χ2-divergence in the MRPs {Im}Mm=1 ⊂MB

is different from that in Appendix D.3.2, since the stationary distributions µ
(k)
m and µ

(k)
m′

(given in equation (98)) are unequal. In particular, the local χ2-divergence takes the form

χ2
(
F
(k)
m′

∥∥F(k)
m

)
=

∑
x,x′∈{x+,x−}

(
F
(k)
m′ (x′ | x)−F

(k)
m (x′ | x)

)2
F
(k)
m (x′ | x)

(101)

where the matrix F
(k)
ι :=

[
diag

(
µ
(k)
ι

)]
P

(k)
ι ∈R2×2 for ι=m or m′ .

We learn from inequality (97) that ∥fm∥∞ ≤ p
2 , therefore,

∣∣∆p
(k)
m

∣∣ ≤ p
2 in local Markov

chain P
(k)
m =PB

(
p,∆p

(k)
m

)
. It follows that µ(k)

m (x)≥ 1
4 and P

(k)
m (x′ | x)≥ 1

2 P0(x
′ | x) for

any x,x′ ∈ {x+, x−}. Here, P0 is the base Markov chain defined in equation (72a). These
lower bounds imply that

F(k)
m (x′ | x)≥ 1

8
P0(x

′ | x) for x,x′ ∈ {x+, x−} .

Substituting the above inequality into equation (101) yields

χ2
(
F
(k)
m′

∥∥F(k)
m

)
≤ 8

∑
x,x′∈{x+,x−}

(
F
(k)
m′ (x′ | x)−F

(k)
m (x′ | x)

)2
P0(x′ | x)

.

We use some algebra and derive that

χ2
(
F
(k)
m′

∥∥F(k)
m

)
≤

8
(
∆p

(k)
m′ −∆p

(k)
m

)2
p3(1− p)

{
p+

(
∆p

(k)
m′ +∆p(k)m

)2} (i)

≤
16
(
∆p

(k)
m′ −∆p

(k)
m

)2
p2(1− p)

.

In step (i) above, we have used the relation max
{
|∆p

(k)
m |, |∆p

(k)
m′ |
}
≤ p

2 once again.
Collecting all the local χ2-divergences yields

DKL
(
P1:n
m′

∥∥P1:n
m

)
≤ n

K

K∑
k=1

χ2
(
F
(k)
m′

∥∥F(k)
m

)
≤ 16 n

p2(1− p)

{
1

K

K∑
k=1

(
∆p

(k)
m′ −∆p(k)m

)2}
.

Recall that by our construction, fι(x) = ∆p
(k)
ι for any x ∈ ∆

(k)
+ ∪∆

(k)
− and ι = m or m′,

therefore, it holds that

1

K

K∑
k=1

(
∆p

(k)
m′ −∆p(k)m

)2
=

∫
X

(
fm′(x)− fm(x)

)2
dx= ∥fm′ − fm∥2µ .
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Due to the orthogonality of basis {ϕB,j}∞j=1 in L2(µ), the definitions of fm′ and fm in equa-
tion (85) imply

∥fm′ − fm∥2µ =
p2

625 n

dn∑
j=2

(
α
(j−1)
m′ − α(j−1)

m

)2 ≤ p2 dn
625 n

.(102)

Putting together the pieces, we prove that DKL
(
P1:n
m′

∥∥P1:n
m

)
≤ dn

40 , as claimed.

D.4.4. Proof of Lemma D.3. Due to the definitions of θ∗m and θ∗m′ in equation (85), we
find that

∥θ∗m′ − θ∗m∥µ =
1

1− γ
∥fm′ − fm∥µ .

We recall from equation (102) that the L2(µ)-difference ∥fm′ − fm∥µ can be expressed
by vectors αm and αm′ . Using the property that

{
αm

}M
m=1

is a 1
4 -packing of the Boolean

hypercube {0,1}dn−1, we find that

∥fm′ − fm∥2µ =
p2

625 n

dn∑
j=2

(
α
(j−1)
m′ − α(j−1)

m

)2 ≥ p2

252 n

dn − 1

4
,

Plugging the lower bound on ∥fm′ − fm∥µ into the expression of ∥θ∗m′ − θ∗m∥µ, we have

∥θ∗m′ − θ∗m∥µ ≥ p

50 (1− γ)

√
dn − 1

n
.

It follows from the conditions σ̄ ≤ 1, p= 1
8 and κ= 2 that

∥θ∗m′ − θ∗m∥µ ≥ c′1κσ̄

1− γ

√
dn
n

for some universal constant c′1 > 0. Under the regularity condition (34), the above lower
bound further implies inequality (89) in the lemma statement.

APPENDIX E: PROOF OF TECHNICAL LEMMAS

In this appendix, we collect together various technical lemmas.

E.1. A kernel-based computation. Here we provide an explicit expression for the
kernel LSTD estimate in terms of kernel matrices. Define the kernel covariance matrix
Kcov ∈Rn×n and cross-covariance matrix Kcr ∈Rn×n with entries

Kcov(i, j) =K(xi, xj)/n , and Kcr(i, j) =K(xi, x
′
j)/n for i, j = 1, . . . , n .

(103)

The following lemma yields an explicit linear-algebraic expression for the solution:

LEMMA E.1 (Kernel-based computation). The LSTD estimator θ̂ takes the form

θ̂ = r+
γ√
n

n∑
i=1

α̂i K(·, xi) ,(104)

where the coefficient vector α̂ ∈Rn is the solution to the linear system(
Kcov + λnIn − γK⊤

cr

)
α̂ = y .(105)

Here y ∈Rn has entries yi = r(x′i)/
√
n .
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PROOF. We first show that function (θ̂− r) can be linearly expressed by the representers
of evaluation {Φxi

}ni=1 as in equation (104). Take a linear subspace Ĥ of H that is spanned
by representer functions {Φxi

}ni=1. By denoting Σ̃cov := Σ̂cov+λnI , we recast equation (10)
into

Σ̃cov(θ̂− r) = Σ̂crθ̂ .(106)

The right hand side satisfies Σ̂crθ̂ ∈ Ĥ by definition. As long as we can show that

Σ̃−1
covĤ⊂ Ĥ ,(107)

it follows from equation (106) that θ̂−r = Σ̃−1
cov

(
Σ̂crθ̂

)
∈ Ĥ, which then implies the existence

of a coefficient vector α̂ ∈Rn such that

θ̂ = r+
γ√
n

n∑
i=1

α̂iΦxi
= r+

γ√
n

n∑
i=1

α̂iK(·, xi) .

We now prove the relation (107) by contradiction. In fact, if there exists a function f ∈ Ĥ
such that g = Σ̃−1

covf /∈ Ĥ, then Σ̃covg =
1
n

∑n
i=1Φxi

g(xi) + λng /∈ Ĥ, which contradicts the
condition f ∈ Ĥ.

Below we derive the explicit form of vector α̂. We take a shorthand f̂ := γ−1(θ̂ − r) =
1√
n

∑n
i=1 α̂iK(·, xi). It follows from equation (106) that(

Σ̂cov − γΣ̂cr

)
f̂ + λnf̂ = Σ̂crr .(108)

Plugging the definitions of Σ̂cov and Σ̂cr into equation (108), we find that the left hand side
equals

1

n
√
n

n∑
i=1

Φxi

n∑
j=1

α̂j

(
K(xi, xj)− γK(x′i, xj)

)
+

λn√
n

n∑
i=1

α̂iΦxi

=
1√
n

[
Φx1

,Φx2
, . . . ,Φxn

](
Kcov − γK⊤

cr + λnIn
)
α̂ .

The right hand side of equation (108) takes the form

1

n

n∑
i=1

Φxi
r(x′i) =

1√
n

[
Φx1

,Φx2
, . . . ,Φxn

]
y .

Comparing both sides, we have shown that the coefficient vector α̂ satisfies the linear sys-
tem (105), thereby completing the proof.

E.2. Proof of Lemma D.4. We observe that the distribution µm is relatively close to
the uniform measure µ over [0,1). Therefore, we expect that the eigenspectra of Σcov(Pm)
and Σcov should be similar, where Σcov(Pm) and Σcov are the covariance operators asso-
ciated with distributions µm and µ respectively. Recall that by our construction of the ker-
nel KB in equation (80), Σcov has eigenpairs {(µj , ϕB,j)}∞j=1. In the following, we expand
Σcov(Pm) using the basis functions {ϕB,j}∞j=1, which yields an arrowhead matrix Σ. We
take shorthands µ̃j ≡ µj(Pm) and ϕ̃j ≡ ϕj(Pm), and connect the eigenpairs {(µ̃j , ϕ̃j)}∞j=1
of Σcov(Pm) with the spectrum of Σ in Appendix E.2.1. The bounds on eigenvalues and the
norms of eigenfunctions are developed in Appendices E.2.2 and E.2.3 respectively.
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E.2.1. Explicit forms of the eigenvalues and eigenfunctions. We calculate the pairwise
inner products of functions {ϕB,j}∞j=1 under the distribution µm. By definition of {ϕB,j}∞j=1

in equation (79b), we have ϕ2
B,j(x) = 1, therefore,

∫
X ϕ2

B,j(x) µm(dx) = 1 for any j =

1,2, . . .. We then consider
∫
X ϕB,i(x)ϕB,j(x) µm(dx) with i ̸= j. Suppose that i, j ≥ 2. Re-

call that by our construction, ϕB,j(x) = ϕB,j(x+
1
2) for any x ∈

[
0, 12
)

and j ≥ 2. Moreover,
we have µm(x) + µm(x+ 1

2) = 2 by equation (87). Based on these observations, we derive
that∫

X
ϕB,i(x)ϕB,j(x)µm(dx) =

∫ 1

2

0
ϕB,i(x)ϕB,j(x)

{
µm(dx) + µm

(
d(x+ 1

2)
)}

= 2

∫ 1

2

0
ϕB,i(x)ϕB,j(x)dx=

∫
X
ϕB,i(x)ϕB,j(x)dx= 0 ,

where the last equality is because ϕB,i and ϕB,j are orthogonal in L2(µ) for any i ̸= j. As
for the cases where i= 1 and j ≥ 2, we find that∫

X
ϕB,i(x)ϕB,j(x) µm(dx)

(i)
=

∫ 1

2

0
ϕθ,j(x)

{
µm(dx)− µm

(
d(x+ 1

2)
)}

(ii)
=

2

p

∫ 1

2

0
ϕB,j(x)fm(x) dx

(iii)
=

1

p

∫
X
ϕB,j(x)fm(x)dx

(iv)
=

{
α(j)

m

25
√
n

if j ≤ dn ,

0 otherwise .

Here step (i) follows from the fact that ϕB,1(x) = 1
{
x ∈ [0, 12)

}
− 1

{
x ∈ [12 ,1)

}
; step (ii)

follows from the equality µm(x)− µm(x+ 1
2) = (2/p)fm(x) by equation (87); step (iii) is

because fm(x) = fm(x+ 1
2) for any x ∈ [0, 12); and step (iv) results from our choice of fm

in equation (85).
Based on the calculations above, we are now ready to explicitly express the eigenvalues

and eigenfunctions of operator Σcov(Pm). Define a dn-by-dn matrix

Σ :=

(
µ1 x

⊤

x D

)
(109)

where D is a diagonal matrix given by D := diag {µ2, µ3, . . . , µdn
} ∈ R(dn−1)×(dn−1) and

the vector x satisfies x := 1
25

√
n

√
µ1Dαm ∈Rdn−1. Recall that the binary vector αm is a

component in the packing of Boolean hypercube {0,1}dn−1.
Let {µ̃j}dn

j=1 be the eigenvalues of matrix Σ in non-increasing order and define µ̃j := µj

for j ≥ dn + 1. Then {µ̃j}∞j=1 are the eigenvalues of covariance operator Σcov(Pm). For
any index j ≥ dn+1, the basis function ϕB,j is the eigenfunction associated with eigenvalue
µ̃j = µj , i.e. ϕ̃j = ϕB,j . When j ∈ [dn], let vj ∈Rdn be the j-th eigenvector of the arrowhead
matrix Σ defined in equation (109). The function ϕ̃j := (ϕB,1, ϕB,2, . . . , ϕB,dn

)vj is the
eigenfunction associated with eigenvalue µ̃j .

In the sequel, we leverage the properties of the arrowhead matrix Σ to analyze the eigen-
pairs {(µ̃j , ϕ̃j)}∞j=1.

E.2.2. Bounds on eigenvalues. We learn from Cauchy interlacing theorem that

µ̃1 ≥ µ2 ≥ µ̃2 ≥ . . .≥ µdn
≥ µ̃dn

.(110)

Therefore, µ̃j ≤ µj for j ≥ 2.
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E.2.3. Bonds on the norms of eigenfunctions. By our construction, we have ∥ϕB,j∥∞ = 1

for all j = 1,2, . . .. It follows that ∥ϕ̃j∥∞ = ∥ϕB,j∥∞ ≤ κ for j ≥ dn + 1. As for indices
j ∈ [dn], it holds that ∥ϕ̃j∥∞ ≤ ∥vj∥1 supi∈[dn]∥ϕB,i∥∞ = ∥vj∥1. In what follows, we verify
that ∥vj∥1 ≤ κ for any j ∈ [dn].

Using the properties of arrowhead matrix Σ [36], we find that vj can be explicitly written
as

vj =
uj

∥uj∥2
with uj =

(
1

(µ̃iI−D)−1x

)
=

(
1√

µ1

25
√
n
(µ̃jI−D)−1

√
Dαm

)
(111)

for any j ∈ [dn]. The eigenvalues {µ̃j}dn

j=1 are zeros to the characteristic function

χ(µ) := µ1 − µ+x⊤(µI−D)−1x .(χ(µ))

Estimation of ∥v1∥1. We first consider ∥v1∥1, the ℓ1-norm of the first eigenvector. Since
∥uj∥2 ≥ 1, we use the expression of v1 in equation (111) and find that

∥v1∥1 ≤ ∥u1∥1 = 1+

√
µ1

25
√
n

dn∑
i=2

√
µi

µ̃1 − µi
.(112)

According to the characteristic equation χ(µ̃1) = 0, it holds µ̃1−µ1 = x⊤(µ̃1I−D)−1x. In-
equality (110) ensures that µ̃1 ≥ µ2 ≥ . . .≥ µdn

, therefore, x⊤(µ̃1I−D)−1x≥ 0. It further
implies µ̃1 ≥ µ1. We plug it into inequality (112) and obtain that

∥v1∥1 ≤ 1 +

√
µ1

25
√
n

dn∑
i=2

√
µi

µ1 − µ2

(i)

≤ 1 +

√
µ1

√
dn
∑∞

i=1 µi

25
√
n(µ1 − µ2)

(ii)

≤ 1 +
b
√
µ1

25(µ1 − µ2)

1− γ

κσ̄
R̄δn

(iii)

≤ 2 = κ .

Here, step (i) is due to the Cauchy-Schwarz inequality; step (ii) is by inequality
∑∞

j=1 µj ≤ b2

4

in condition (32a) and the critical inequality (33); and step (iii) is due to inequality R̄δn ≤
10κσ̄

(
1 − µ2

µ1

)√µ1

b in condition (36b). We then conclude that ∥ϕ1∥∞ ≤ ∥v1∥1 ≤ 2 = κ, as
claimed in the lemma statement.

Estimation of ∥vj∥1 for j = 2, . . . , dn. We next consider the ℓ1-norms of eigenvectors
v2, . . . ,vdn

. Intuitively, when the sample size n is sufficiently large, vector x in matrix Σ
is small and Σ is approximately diagonal. In this case, we expect that the eigenvector vj is
close to the j-th canonical basis ej so that ∥ϕ̃j∥∞ = ∥vj∥1 ≈ ∥ej∥1 = 1.

In order to prove this claim, we will show that the j-th entry of vector uj (denoted by
uj(j)) in equation (111) is noticeably larger than the other entries in uj . This is because
the eigenvalue difference |µ̃j − µj | is rather small compared with eigengaps |µ̃j − µi| with
i ̸= j. Indeed, we will prove that it roughly holds µj − µ̃j ≲

µj

n , thus uj(j) has order Ω(
√
n).

Under our eigengap condition min3≤j≤dn

{√
µj−1 −

√
µj

}
≥ δn

2dn
, the gaps |µ̃j − µi| with

i ̸= j are relatively large so that the sum of entries
{
|uj(i)| | i ̸= j

}
is at most Õ(

√
dn)

2.
Here, uj(i) denotes the i-th entry of vector uj . To this end, rescaling uj yields a vector vj

that approximates ej .

2Õ stands for the big O notation, omitting logarithmic factors.
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Let us now prove the arguments that were sketched above. For notational simplicity, we
only consider vj with 2≤ j ≤ dn − 1. The analysis of vdn

is very similar. We first partition
the entries of uj into three groups and decompose the norm ∥vj∥1 accordingly. Specifically,
we have ∥vj∥1 =A1 +A2 +A3 where

A1 :=
1

∥uj∥2
{
|uj(1)|+ |uj(j)|+ |uj(j + 1)|

}
,

A2 :=
1

∥uj∥2

j−1∑
i=2

|uj(i)| and A3 :=
1

∥uj∥2

dn∑
i=j+2

|uj(i)|.

By the Cauchy-Schwarz inequality, the term A1 satisfies

A1 ≤
|uj(1)|+ |uj(j)|+ |uj(j + 1)|√
(uj(1))2 + (uj(j))2 + (uj(j + 1))2

≤
√
3 .(113)

We take shorthands ũj,i :=
25

√
n√

µ1
uj(i) =

√
µi

µ̃j−µi
αm(i) for i= 2,3, . . . , dn. Since uj(j) dom-

inates the other entries in uj , we approximate A2 and A3 by

A2 ≤
1

|uj(j)|

j−1∑
i=2

|uj(i)|=
1

|ũj,j |

j−1∑
i=2

|ũj,i|=: Ã2,(114a)

A3 ≤
1

|uj(j)|

dn∑
i=j+2

|uj(i)|=
1

|ũj,j |

dn∑
i=j+2

|ũj,i|=: Ã3.(114b)

In the following, we estimate upper bounds Ã2 and Ã3 in inequalities (114).

Under the eigengap condition min3≤i≤dn

{√
µi−1 −

√
µi

}
≥ δn

2dn
, we can show that

j−1∑
i=2

√
µi

µi − µj
≤ 2dn

δn
(1 + logn),

dn∑
i=j+2

√
µi

µj+1 − µi
≤ 2dn

δn
(1 + logn).(115)

We assume the claim (115) to hold at this point and prove that both Ã2 and Ã3 are constant
order.

In terms of the numerators of terms Ã2 and Ã3, the interlacing inequality (110) and the
claim (115) imply that

j−1∑
i=2

|ũj,i|=
j−1∑
i=2

√
µi

µi − µ̃j
≤

j−1∑
i=2

√
µi

µi − µj
≤ 2dn

δn
(1 + logn),(116a)

dn∑
i=j+2

|ũj,i|=
dn∑

i=j+2

√
µi

µ̃j − µi
≤

j−1∑
i=2

√
µi

µj+1 − µi
≤ 2dn

δn
(1 + logn).(116b)

Consider the common denominator |ũj,j |=
√
µj

µj−µ̃j
of Ã2 and Ã3. A key step in our analysis is

to estimate the perturbation term µj − µ̃j . Recall that µ̃j satisfies the characteristic equation
χ(µ̃j) = 0, which translates into

µ1µj

252n(µj − µ̃j)
= µ1 − µ̃j +

µ1

252n

∑
2≤i≤dn,

i ̸=j

µi

µ̃j − µi
.
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We use the interlacing inequality (110) and obtain that

µ1µj

252n(µj − µ̃j)
≥ µ1 − µj −

µ1

252n

j−1∑
i=2

µi

µi − µj
≥ µ1 − µj −

µ
3

2

1

252n

j−1∑
i=2

√
µi

µi − µj
.

When the bounds (115) hold, we have

(117)
µ

3

2

1

252n

j−1∑
i=2

√
µi

µi − µj
≤ 2µ

3

2

1 dn
252nδn

(1 + logn)

(i)

≤ 2µ
3

2

1

252

{R̄(1− γ)

κσ̄

}2
δn (1 + logn)

(ii)

≤ 8

125
(µ1 − µj),

where step (i) is due to inequality (33); and in step (ii) we use inequality

R̄δn≤10κσ̄
(
1− µ2

µ1

) κσ̄/(
√
µ1R̄)

(1− γ)2 logn

in condition (36b). We integrate the pieces and derive that

µ1µj

252n(µj − µ̃j)
≥ 1

2
(µ1 − µj).

It further implies

1

|ũj,j |
=

µj − µ̃j√
µj

≤
2 µ1

√
µj

252 n(µ1 − µj)
.(118)

Combining inequalities (116) and (118), we find that the terms Ã2 and Ã3 in bounds (114)
satisfy

max{Ã2, Ã3} ≤
2µ1

√
µj

252n(µ1 − µj)

{2dn
δn

(1 + logn)
}

≤ 2

µ1 − µj

{ 2µ
3

2

1 dn
252nδn

(1 + logn)
} (i)

≤ 16

125
,

where step (i) follows from inequality (117). We plug inequalities (113) and (114) into the
decomposition ∥vj∥1 =A1 +A2 +A3 and derive that ∥ϕ̃j∥∞ ≤ ∥vj∥1 ≤ 2 = κ, as claimed
in the lemma statement.

It only remains to prove the claim (115). We use some algebra and obtain that
√
µi

µi − µj
≤ 1

√
µi −

√
µj

for i≤ j − 1 and

√
µi

µj+1 − µi
≤ 1

√
µj+1 −

√
µi

for i≥ j + 2.

Under the eigengap condition min3≤i≤dn

{√
µi−1 −

√
µi

}
≥ δn

2dn
, we have

√
µi1 −

√
µi2 ≥ (i2 − i1)

δn
2dn

for any 2≤ i1 < i2 ≤ dn.
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It then follows that
j−1∑
i=2

√
µi

µi − µj
≤

j−1∑
i=2

1
√
µi −

√
µj

≤ 2dn
δn

j−1∑
i=2

1

j − i

≤ 2dn
δn

{
1 + log(j − 2)

}
≤ 2dn

δn
(1 + logn) .

The second bound in equation (115) can be proved in a similar way.

APPENDIX F: EXTENSION TO OFF-POLICY EVALUATION

Here we describe how the results in the main body can be extended to the off-policy
setting, in which the the data used to collect the data differs from the stationary measure
induced by the policy of interest. We begin in Appendix F.1 by setting up the problem of
off-policy evaluation; in Appendix F.2, we state an extension of the non-asymptotic upper
bounds from Theorem 3.1 to this off-policy setting. Appendix F.3 is devoted to the proofs.

F.1. Problem set-up. The off-policy setting is more general than the on-policy setting,
as we describe here. Instead of a Markov reward process, we consider a Markov decision
process (MDP) J (P, r, γ) defined over a state space S and an action space A, and with
transition kernel P . Note that a Markov reward process can be obtained from an MDP by fix-
ing some policy; an MDP can be viewed as a collection of Markov reward processes indexed
by policies. In an MDP, the transition kernel specifies the distribution of a future state condi-
tioned on a state-action pair. The function r : S ×A→R denotes the reward defined over the
state and action space. Our goal is to use data to evaluate the quality of a target policy π. In
particular, we seek to estimate the state-action value function (Q-function) Qπ : S ×A→R

given by

Qπ(s, a) := E
[∑∞

h=0 γ
h r(Sh,Ah) | S0 = s,A0 = a

]
,

where the trajectory (S0 = s,A0 = a,S1,A1, S2,A2, . . .) is generated by policy π via
Ah ∼ π(· | Sh), and Sh+1 ∼P(· | Sh,Ah).

In the off-policy setting, we do not observe data that has been generated by the target
policy. Instead, the dataset consists of i.i.d. tuples D = {(si, ai, s′i)}ni=1, where the samples
{(si, ai)}ni=1 are independently drawn from a distribution µD over the space S × A and s′i
is the next state transiting from (si, ai) according to transition kernel P . The key distinction
from the on-policy setting is that the distribution µD over state-action pairs might be different
from the stationary distribution µπ associated with implementing the target policy π in steady
state; for this reason, this setting is referred to as off-policy evaluation.

In order to apply an RKHS-method in the the off-policy setting, we consider a kernel
function K defined over the state-action space3 S × A and take the representer of evalua-
tion as Φs,a :=K( · , (s, a)). The kernel LSTD estimate θ̂ is again defined by the fixed-point
equation (10) except that the (cross-)covariance operators are replaced by

Σ̂cov :=
1

n

n∑
i=1

Φsi,ai
⊗Φsi,ai

and Σ̂cr =
1

n

n∑
i=1

Φsi,ai
⊗
{∫

A
Φ(s′i, a)

π(da | s′i)
}
.

(119)

Again, we define θ∗ as the population-level counterpart of θ̂. Our goal is to derive non-
asymptotic upper bounds on the estimation error ∥θ̂− θ∗∥2µD

.

3Recall that in the on-policy setting, our kernel was defined only over the state space.
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F.2. Non-asymptotic upper bounds. In order to state and prove some non-asymptotic
upper bounds on this estimator, we need to quantify the amount of distribution shift. We do
so via coefficients Cshift ∈

(
0, (1/γ)

)
and C ′

shift ∈ [1,+∞) given by

sup
f∈H:∥f∥µD>0

E[f(S,A)f(S′,A′)]

∥f∥2µD

≤Cshift < (1/γ) and(120a)

sup
f∈H:∥f∥µD>0

E
[
E[f(S′,A′) | S′]2

]
∥f∥2µD

≤C ′
shift <+∞ .(120b)

The expectations are taken over quadruples (S,A,S′,A′) with (S,A)∼ µD , S′ ∼P(· | S,A)
and A′ ∼ π(· | S′). In the special case of a linear kernel, the assumption that Cshift < (1/γ) is
closely related to a stability condition from the paper [39], shown to be necessary for a stable
estimation of value function. In general, it always holds that Cshift ≤ (1 +C ′

shift)/2.
In the special case of on-policy evaluation, for which µD is equal the stationary distribution

µπ under the target policy π, we can take Cshift = C ′
shift = 1. For a genuinely off-policy

problem, the two distributions µD and µπ are different, so that the coefficients Cshift and C ′
shift

may become large. Let us relate these coefficients to the so-called concentrability coefficients
from the RL literature. The concentrability coefficients (ccon,Ccon) provide uniform bounds
on the likelihood ratio dµπ

dµD
as follows:

ccon ≤
dµπ

dµD
(s, a)≤Ccon for any state-action pair (s, a) ∈ S ×A.

Given bounds of this type, we can take Cshift =
(1+

Ccon

ccon
)

2 in equation (120a) and C ′
shift =

Ccon

ccon
in equation (120b). See Appendix F.3 for the proofs of these claims.

Under conditions (120a) and (120b), we can prove a non-asymptotic upper bound on the
kernel-based estimator, with the following modifications:

• (Eigenvalues) The eigenvalues {µj}∞j=1 are induced by measure µD .
• (Effective horizon) The effective horizon is defined by H(γ) := 1

1−γ Cshift
.

• (Bellman residual variance) The variance term is defined as

σ2(θ∗) := E(S,A)∼µD

[(
θ∗(S,A)− r(S,A)− γEA′∼π(·|S′)[θ

∗(S′,A′) | S′ ]
)2]

.(121)

By using the parameters above, we can define the critical inequality and radius in the same
way as in inequality (CI(ζ)).

As a corollary of Theorem 3.1, we can show that the regularized kernel LSTD estimate θ̂
in the off-policy setting has upper bounds of the form

∥θ̂− θ∗∥2µD
≤ c1R

2
{
δ2 +

λn

1− γ Cshift

}
(122)

with probability at least 1− 2 exp
(
− c2nδ2(1−γ Cshift)2

b2

)
for any λn ≥ c0δ

2(1− γ Cshift).

COROLLARY F.1 (Non-asymptotic upper bounds for off-policy evaluation). Under the
distribution shift assumptions (120a) and (120b), the bound (122) holds for any solution δ to
the critical inequality CI(κσ(θ∗)) once the sample size n is large enough to ensure that

R2δ2n(κσ(θ
∗))≤ c

κσ2(θ∗)√
C ′
shift (1− γ Cshift)

√
n
.(123)

To be clear, unlike our results in the main body, we cannot guarantee the sharpness and
optimality of these off-policy bounds when the coefficient Cshift is much larger than 1. Re-
solving this issue of optimality is an important direction for future research.
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F.3. Proofs. The proof of Corollary F.1 closely resembles that of Theorem 3.1, with the
main differences lying in the lower bound (i) in inequality (39) of Lemma 4.1 and the proof
of Lemma 4.3 regarding the upper bound on term T3. For the off-policy setting, we define
the function ρ in the following modified way:

ρ(f) :=
(
E
[
f2(S,A)− γ f(S,A)f(S′,A′)

])1/2
,

where the state-action pair (S,A) is generated from the distribution µD , and (S′,A′) repre-
sents the succeeding state and action drawn from the MDP P and target policy π. Under the
distribution shift condition (120a), the decomposition (39) takes the following modified form

(1− γ Cshift)∥∆̂∥2µD

(i)

≤ ρ2(∆̂)
(ii)
=
{ 3∑

j=1

Tj

}
− λn∥∆̂∥2H ,(124)

where the terms {Ti}3i=1 adhere to the same definitions as in equations (40). By following a
similar approach to deriving Lemmas 4.2 and 4.3, we can show that

T1 ≤ c (1− γ Cshift) δ
2
n

{
∥∆̂∥H +R2

}
+ cR (1− γ Cshift) δn ∥∆̂∥µD and(125a)

T3 ≤ c (1− γ Cshift) δ
2
n

{
∥∆̂∥H +R2

}
+

ρ2(∆̂)

2
.(125b)

Each bound holds with probability at least 1 − exp
(
− c′ nδ

2
n(1−γCshift)2

b2

)
with δn =

δn(κσ(θ
∗)). By combining the aforementioned pieces in the same manner as in the proof

of Theorem 3.1, we establish the bounds as stated in Corollary F.1.

It is worth noting that the proof of inequality (125b) involves estimating a Rademacher
complexity of the form

Rn(t) := E

[
sup

ρ(f)≤t
∥f∥H≤R

∣∣∣ 1
n

n∑
i=1

εi Eπ

[
f(s′i,A) | s′i

]∣∣∣] ,(126)

which is a novel component in the analysis. This complexity arises in the proof of Lemma C.4
(the off-policy version), which bounds the solution tn to inequality E[Z̃n(t)] ≤ t2/8 for
Z̃n(t) = supρ(t)≤t,∥f∥H≤R

∣∣⟨f, (Σ̂cov − γΣ̂cr)f⟩H
∣∣. To control Rn(t), we leverage the dis-

tribution shift assumption (120b). In Lemma F.2 below, we provide a statement of the upper
bound.

LEMMA F.2. Let δn denote the smallest solution to critical inequality (CI(ζ)) defined
with the modified parameters. Then

Rn(t) ≤ c
√

C ′
shift

R2(1− γ Cshift)

ζ
max

{
δ2n, δn

t
R
√
1−γ Cshift

}
.(127)

Proof of Lemma F.2. We introduce a norm ∥f∥+ := E
[
E[f(S′,A′) | S′]2

] 1

2 for any func-
tion f ∈H. Let {µ+

j }∞j=1 be the eigenvalues of the covariance operator

Σ+ := E
[
E[ΦS′,A′ | S′]⊗E[ΦS′,A′ | S′]

]
.

Due to the Courant minimax principle, condition (120b) implies the relation µ+
j ≤C ′

shift µj ,
where {µj}∞j=1 denote the eigenvalues associated with the population-level data distribu-
tion µD .
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We introduce another Rademacher complexity R̃n(δ) closely related to Rn(t):

R̃n(δ) := E

[
sup

∥f∥+≤δ
∥f∥H≤1

∣∣∣ 1
n

n∑
i=1

εi Eπ

[
f(s′i,A) | s′i

]∣∣∣] .
It is evident that

R̃n(δ)≤

√√√√ 2

n

∞∑
j=1

min{δ2, µ+
j } ≤

√√√√ 2

n

∞∑
j=1

min{δ2,C ′
shift µj}

≲
R(1− γ Cshift)

ζ
max

{√
C ′
shift δ

2
n, δnδ

}
,(128)

where the last inequality follows from the property of critical inequality (CI(ζ)).
Moreover, assumptions (120a) and (120b) ensure that any function f with ρ(f)≤ t satis-

fies

∥f∥2+ ≤C ′
shift∥f∥2µD

≤C ′
shift(1− γ Cshift)

−1ρ2(f)≤C ′
shift(1− γ Cshift)

−1t2 .

This allows us to establish the relation

Rn(t) =R E

[
sup

ρ(f)≤t/R
∥f∥H≤1

∣∣∣ 1
n

n∑
i=1

εi Eπ

[
f(s′i,A) | s′i

]∣∣∣]

≤R E

[
sup

∥f∥+≤
√

C′
shift · t

R
√

1−γ Cshift

∥f∥H≤1

∣∣∣ 1
n

n∑
i=1

εi Eπ

[
f(s′i,A) | s′i

]∣∣∣]

=R · R̃n

(√
C ′
shift ·

t
R
√
1−γ Cshift

)
.(129)

Combining inequalities (128) and (129) completes the proof of Lemma F.2.

Relation between coefficients. In the following, we establish the relationships between the
coefficients Cshift, C ′

shift and (ccon,Ccon). Using the concentrability coefficients, we observe
that

cconE(S,A)∼µD [f
2(S′,A′)]≤ E(S,A)∼µπ

[f2(S′,A′)]
(∗)
= E(S,A)∼µπ

[f2(S,A)]

≤CconE(S,A)∼µD [f
2(S,A)] =Ccon ∥f∥2µD

,

where the equality (∗) arises from the stationarity of distribution µπ . It then follows from
Young’s inequality that

E
[
f(S,A)f(S′,A′)

]
≤ 1

2

{
E[f2(S,A)] +E[f2(S′,A′)]

}
≤ 1 + c−1

conCcon

2
∥f∥2µD

.

Consequently, condition (120a) holds with parameter Cshift = (1+ c−1
conCcon)/2.

Similarly, we can establish inequality (120b) with C ′
shift = Ccon/ccon by noting that

E
[
E[f(S′,A′) | S′]2

]
≤ E[f2(S′,A′)].
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