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We study the covariate shift problem in the context of nonparametric re-
gression over a reproducing kernel Hilbert space (RKHS). We focus on two
natural families of covariate shift problems defined using the likelihood ratios
between the source and target distributions. When the likelihood ratios are
uniformly bounded, we prove that the kernel ridge regression (KRR) estima-
tor with a carefully chosen regularization parameter is minimax rate-optimal
(up to a log factor) for a large family of RKHSs with regular kernel eigen-
values. Interestingly, KRR does not require full knowledge of the likelihood
ratio apart from an upper bound on it. In striking contrast to the standard
statistical setting without covariate shift, we also demonstrate that a naïve es-
timator, which minimizes the empirical risk over the function class, is strictly
suboptimal under covariate shift as compared to KRR. We then address the
larger class of covariate shift problems where likelihood ratio is possibly un-
bounded yet has a finite second moment. Here, we propose a reweighted KRR
estimator that weights samples based on a careful truncation of the likelihood
ratios. Again, we are able to show that this estimator is minimax optimal, up
to logarithmic factors.

1. Introduction. A widely adopted assumption in supervised learning [6, 20] is that the
training and test data are sampled from the same distribution. Such a no-distribution-shift as-
sumption, however, is frequently violated in practice. For instance, in medical image analysis
[5, 8], distribution mismatch is widespread across the hospitals due to inconsistency in med-
ical equipment, scanning protocols, subject populations, etc. As another example, in natural
language processing [7], the training data are often collected from domains with abundant
labels (e.g., Wall Street Journal), while the test data may well arise from a different domain
(e.g., arXiv which is mainly composed of scientific articles).

In this paper, we focus on a special and important case of distribution mismatch, known as
covariate shift. In this version, the marginal distributions over the input covariates may vary
from the training (or source) to test (or target) data,1 while the conditional distribution of the
output label given the input covariates is shared across training and testing. Motivating appli-
cations include image, text, and speech classification in which the input covariates determine
the output labels [19]. Despite its importance in practice, the covariate shift problem is under-
explored in theory, when compared to supervised learning without distribution mismatch—a
subject that has been well studied in the past decades [6].

This paper aims to bridge this gap by addressing several fundamental theoretical questions
regarding covariate shift. First, what is the statistical limit of estimation in the presence of
covariate shift? And how does this limit depend on the “amount” of covariate shift between
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the source and target distributions? Second, does nonparametric least-squares estimation—a
dominant (and often optimal) approach in the no-distribution-shift case—achieve the optimal
rate of estimation with covariate shift? If not, what is the optimal way of tackling covariate
shift?

1.1. Contributions and overview. We address the aforementioned theoretical questions
regarding covariate shift in the context of nonparametric regression over reproducing kernel
Hilbert spaces (RKHSs) [17]. That is, we assume that under both the source and target distri-
butions, the regression function (i.e., the conditional mean function of the output label given
the input covariates) belongs to an RKHS. In this paper, we focus on two broad families of
source-target pairs depending on the configuration of the likelihood ratios between them.

We first consider the uniformly B-bounded family in which the likelihood ratios are uni-
formly bounded by a quantity B . In this case, we present general performance upper bounds
for the kernel ridge regression (KRR) estimator in Theorem 3.1. Instantiations of this general
bound on various RKHSs with regular eigenvalues are provided in Corollary 3.2. It is also
shown in Theorem 3.3 that KRR—with an optimally chosen regularization parameter that
depends on the largest likelihood ratio B—achieves the minimax lower bound for covariate
shift over this uniformly B-bounded family. It is worth noting that the optimal regularization
parameter shrinks as the likelihood ratio bound increases.

We further show—via a constructive argument—that the nonparametric least-squares es-
timator, which minimizes the empirical risk on the training data over the specified RKHS,
falls short of achieving the lower bound; see Theorem 3.4. This marks a departure from the
classical no-covariate-shift setting, where the constrained estimator (i.e., the nonparametric
least-squares estimator) and the regularized estimator (i.e., the KRR estimator) can both at-
tain optimal rates of estimation [22]. In essence, the failure arises from the misalignment
between the projections under the source and target covariate distributions. Loosely speak-
ing, nonparametric least-squares estimation projects the data onto an RKHS according to the
geometry induced by the source distribution. Under covariate shift, the resulting projection
can be extremely far away from the projection under the target covariate distributions.

In the second part of the paper, we turn to a more general setting, where the likelihood ra-
tios between the target and source distributions may not be bounded. Instead, we only require
the target and source covariate distributions to have a likelihood ratio with bounded second
moment. We propose a variant of KRR that weights samples based on a careful truncation of
the likelihood ratios. We are able to show in Theorem 4.1 that this estimator is rate-optimal
over this larger class of covariate shift problems.

1.2. Related work. There is a large body of work on distribution mismatch and, in partic-
ular, on covariate shift. Below we review the work that is directly relevant to ours, and refer
the interested reader to the book [19] and the survey [12] for additional references.

Shimodaira [18] first studied the covariate shift problem from a statistical perspective, and
established the asymptotic consistency of the importance-reweighted maximum likelihood
estimator (without truncation). However, no finite-sample guarantees were provided therein.
Similar to our work, Cortes and coauthors [4] analyzed the importance-reweighted estimator
when the density ratio is either bounded or has a finite second moment. However, their anal-
ysis applies to the function class with finite pseudodimension (cf. the book [14]), while the
RKHS considered herein does not necessarily obey this assumption. Moreover, even when
the RKHS has a finite rank D, their result (e.g., Theorem 8) is suboptimal—with a rate of√

V 2D/n compared to our optimal rate V 2D/n. Here V 2 is the bound on the second mo-
ment of the likelihood ratios and n denotes the number of samples. Recently, Kpotufe and
Martinet [9] investigated covariate shift for nonparametric classification. They proposed a



740 C. MA, R. PATHAK AND M. J. WAINWRIGHT

novel notion called transfer exponent to measure the amount of covariate shift between the
source and target distributions. An estimator based on k nearest neighbors was shown to be
minimax optimal over the class of covariate shift problems with bounded transfer exponent.
Inspired by the work of Kpotufe and Martinet, the current authors [13] proposed a more
fine-grained similarity measure for covariate shift and applied to nonparametric regression
over the class of Hölder continuous functions. It is worth pointing out that both the trans-
fer exponent and the new fine-grained similarity measure are different and cannot directly
be compared to the moment conditions we impose on the likelihood ratios in this work. In
particular, there exist instances of covariate shift where the second moment of the likelihood
ratios is bounded whereas the transfer exponent is infinite. One such case is when the source
and target distributions are both Gaussian with the same mean but different scales. Another
significant difference lies in the assumptions on the regression function. Kpotufe and Mar-
tinet [9] and Pathak et al. [13] focused on the class of Hölder continuous functions, while we
focus on RKHSs. This leads to drastically different optimal estimators. Schmidt-Hieber and
Zamolodtchikov [16] recently established the local convergence of the nonparametric least-
squares estimator for the specific class of 1-Lipschitz functions over the unit interval [0,1]
and applied it to the covariate shift setting.

Apart from covariate shift, other forms of distribution mismatch have been analyzed from
a statistical perspective. Cai et al. [1] analyzed posterior shift and proposed an optimal k-
nearest-neighbor estimator. Maity et al. [11] conducted the minimax analysis for the label
shift problem. Recently, Reeve et al. [15] studied the general distribution shift problem (also
known as transfer learning) which allows both covariate shift and posterior shift.

Notation. Throughout the paper, we use c, c′, c1, c2 to denote universal constants, which
may vary from line to line. Also, f (n) � h(n) (or f (n) = O(h(n))) means |f (n)| ≤ c1|h(n)|
for some constant c1 > 0, f (n) � h(n) means |f (n)| ≥ c2|h(n)| for some constant c2 > 0,
f (n) ≍ h(n) means c2|h(n)| ≤ |f (n)| ≤ c1|h(n)| for some constants c1, c2 > 0, and f (n) =
o(h(n)) means limn→∞ f (n)/h(n) = 0.

2. Background and problem formulation. In this section, we formulate and provide
background on the problem of covariate shift in nonparametric regression.

2.1. Nonparametric regression under covariate shift. The goal of nonparametric regres-
sion is to predict a real-valued response Y based on a vector of covariates X ∈ X . For each
fixed x, the optimal estimator in a mean-squared sense is given by the regression func-
tion f ⋆(x) := E[Y |X = x]. In a typical setting, we assume observations of n i.i.d. pairs
{(xi, yi)}ni=1, where each xi is drawn according to some distribution P over X , and then
yi is drawn according to the law (Y |X = xi). We assume throughout that for each i, the
residual wi := yi − f ⋆(xi) is a sub-Gaussian random variable with variance proxy σ 2.

We refer to the distribution P over the covariate space as the source distribution. In the
standard set-up, the performance of an estimator f̂ is measured according to its L2(P )-error:

∥∥f̂ − f ⋆
∥∥2
P := EX∼P

(
f̂ (X) − f ⋆(X)

)2 =
∫

X

(
f̂ (x) − f ⋆(x)

)2
p(x)dx,(1a)

where p is the density of P .
In the covariate shift version of this problem, we have a different goal—that is, we wish

to construct an estimate f̂ whose L2(Q)-error is small. Here the target distribution Q is
different from the source distribution P . In analytical terms, letting q be the density of Q,
our goal is to find estimators f̂ such that

∥∥f̂ − f ⋆
∥∥2
Q = EX∼Q

(
f̂ (X) − f ⋆(X)

)2 =
∫

X

(
f̂ (x) − f ⋆(x)

)2
q(x) dx(1b)
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is as small as possible. Clearly, the difficulty of this problem should depend on some notion
of discrepancy between the source and target distributions.

2.2. Conditions on source-target likelihood ratios. The discrepancy between the L2(P )

and L2(Q) norms is controlled by the likelihood ratio

ρ(x) :=
q(x)

p(x)
,(2)

which we assume exists for any x ∈ X . By imposing different conditions on the likelihood
ratio, we can define different families of source-target pairs (P,Q). In this paper, we focus
on two broad families of such pairs.

Uniformly B-bounded families. For a quantity B ≥ 1, we say that the likelihood ratio is
B-bounded if

sup
x∈X

ρ(x) ≤ B.(3)

It is worth noting that B = 1 recovers the case without covariate shift, that is, P = Q. Our
analysis in Section 3 works under this condition.

χ2-bounded families. A uniform bound on the likelihood ratio is a stringent condition,
so that it is natural to relax it. One relaxation is to instead bound the second moment: in
particular, for a scalar V 2 ≥ 1, we say that the likelihood ratio is V 2-moment bounded if

EX∼P

[
ρ2(X)

]
≤ V 2.(4)

Note that when the uniform bound (3) holds, the moment bound (4) holds with V 2 = B . To
see this, we can write EX∼P [ρ2(X)] = EX∼Q[ρ(X)] ≤ B . However, the moment bound (4)
is much weaker in general. It is also worth noting that the χ2-divergence between Q and P

takes the form

χ2(Q‖P
)
= EX∼P

[
ρ2(X)

]
− 1.

Therefore, one can understand the quantity V 2 − 1 as an upper bound on the χ2-divergence
between Q and P . Our analysis in Section 4 applies under this weaker condition on the
likelihood ratio.

2.3. Unweighted versus likelihood-reweighted estimators. In this paper, we focus on
methods for nonparametric regression that are based on optimizing over a Hilbert space H

defined by a reproducing kernel. The Hilbert norm ‖f ‖H is used as a means of enforcing
“smoothness” on the solution, either by adding a penalty to the objective function or via an
explicit constraint.

In the absence of any knowledge of the likelihood ratio, a naïve approach is to simply
compute the unweighted regularized estimate

f̂λ := arg min
f ∈H

{
1

n

n∑

i=1

(
f (xi) − yi

)2 + λ‖f ‖2
H

}
,(5)

where λ > 0 is a user-defined regularization parameter. When H is a reproducing kernel
Hilbert space (RKHS), then this estimate is known as the kernel ridge regression (KRR)
estimate. This is a form of empirical risk minimization, but in the presence of covariate
shift, the objective involves an empirical approximation to EP [(Y − f (X))2], as opposed
to EQ[(Y − f (X))2].
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If the likelihood ratio were known, then a natural proposal is to instead compute the
likelihood-reweighted regularized estimate

f̃ rw
λ := arg min

f ∈H

{
1

n

n∑

i=1

ρ(xi)
(
f (xi) − yi

)2 + λ‖f ‖2
H

}
.(6)

The introduction of the likelihood ratio ensures that the objective now provides an unbiased
estimate of the expectation EQ[(Y − f (X))2]. However, reweighting by the likelihood ratio
also increases variance, especially in the case of unbounded likelihood ratios. Accordingly,
in Section 4, we study a suitably truncated form of the estimator (6).

2.4. Kernels and their eigenvalues. Any reproducing kernel Hilbert space is associated
with a positive semidefinite kernel function K : X × X → R. Under mild regularity condi-
tions, Mercer’s theorem guarantees that this kernel has an eigen-expansion of the form

K
(
x, x′) :=

∞∑

j=1

μjφj (x)φj

(
x′)(7)

for a sequence of nonnegative eigenvalues {μj }j≥1, and eigenfunctions {φj }j≥1 taken to be
orthonormal in L2(Q). Given our goal of deriving bounds in the L2(Q)-norm, it is appropri-
ate to expand the kernel in L2(Q), as we have done here (7), in order to assess the richness
of the function class.

Given the Mercer expansion, the squared norm in the reproducing kernel Hilbert space
takes the form

‖f ‖2
H =

∞∑

j=1

θ2
j

μj

, where θj :=
∫

X

f (x)φj (x)q(x) dx.

Consequently, the Hilbert space itself can be written as

H :=
{
f =

∞∑

j=1

θjφj

∣∣∣
∞∑

j=1

θ2
j

μj

< ∞
}
.(8)

Our goal is to understand the performance of nonparametric regression under covariate shift
when the regression function lies in H.

Throughout this paper, we impose a standard boundedness condition on the kernel
function—namely, there exists some finite κ > 0 such that

sup
x∈X

K (x, x) ≤ κ2.(9)

Note that any continuous kernel over a compact domain satisfies this condition. Moreover, a
variety of commonly used kernels, including the Gaussian and Laplacian kernels, satisfy this
condition over any domain.

3. Analysis for bounded likelihood ratios. We begin our analysis in the case of
bounded likelihood ratios. Our first main result is to prove an upper bound on the performance
of the unweighted KRR estimate (5). First, we prove a family of upper bounds (Theorem 3.1)
depending on the regularization parameter λ. By choosing λ so as to minimize this family of
upper bounds, we obtain concrete results for different classes of kernels (Corollary 3.2). We
then turn to the complementary question of lower bounds: in Theorem 3.3, we prove a family
of lower bounds that establish that for covariate shift with B-bounded likelihood ratios, the
KRR estimator is minimax-optimal up to logarithmic factors in the sample size. This opti-
mality guarantee is notable since it applies to the unweighted estimator that does not involve
full knowledge of the likelihood ratio (apart from an upper bound).
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In the absence of covariate shift, it is well-known that performing empirical risk minimiza-
tion with an explicit constraint on the function also leads to minimax-optimal results. Indeed,
without covariate shift, projecting an estimate onto a convex constraint set containing the
true function can never lead to a worse result. In Theorem 3.4, we show that this natural
property is no longer true under covariate shift: performing empirical risk minimization over
the smallest Hilbert ball containing f ⋆ can be suboptimal. Optimal procedures—such as the
regularized KRR estimate—are actually operating over Hilbert balls with radius substantially
larger than the true norm ‖f ⋆‖H.

3.1. Unweighted kernel ridge regression is near-optimal. We begin by deriving a fam-
ily of upper bounds on the kernel ridge regression estimator (5) under covariate shift. In
conjunction with our later analysis, these bounds will establish that the KRR estimate is
minimax-optimal up to logarithmic factors for covariate shift with bounded likelihood ratios.

THEOREM 3.1. Consider a covariate-shifted regression problem with likelihood ratio

that is B-bounded (3) over a Hilbert space with a κ-uniformly bounded kernel (9). Then for

any λ ≥ 10κ2/n, the KRR estimate f̂λ satisfies the bound

∥∥f̂λ − f ⋆
∥∥2
Q ≤ 4λB

∥∥f ⋆
∥∥2
H

︸ ︷︷ ︸
b2

λ(B)

+80σ 2B
logn

n

∞∑

j=1

μj

μj + λB
︸ ︷︷ ︸

vλ(B)

(10)

with probability at least 1 − 28κ2

λ
e
− nλ

16κ2 − 1
n10 .

See Section 5.1 for the proof of this theorem. In Appendix 5.1 of the Supplementary Ma-
terial [10], we also present a corollary which provides a corresponding expectation bound for
the KRR estimator f̂λ for such B-bounded covariate shifts.

Note that the upper bound (10) involves two terms. The first term b2
λ(B) corresponds

to the squared bias of the KRR estimate, and it grows proportionally with the regularization
parameter λ and the likelihood ratio bound B . The second term vλ(B) represents the variance
of the KRR estimator, and it shrinks as λ increases, so that λ controls the bias-variance trade-
off. This type of trade-off is standard in nonparametric regression; what is novel of interest
to us here is how the shapes of these trade-off curves change as a function of the likelihood
ratio bound B .

Figure 1 plots the right-hand side of the upper bound (10) as a function of λ for several
different choices B ∈ {1,5,10,15}. (In all cases, we fixed a kernel with eigenvalues decaying
as μj = j−2, sample size n = 8000, and noise variance σ 2 = 1.) Of interest to us is the choice
λ∗(B) that minimizes this upper bound; note how this optimizing λ∗(B) shifts leftwards to
smaller values as B is increased.

We would like to understand the balancing procedure that leads to an optimal λ∗(B) in
analytical terms. This balancing procedure is most easily understood for kernels with regular

eigenvalues, a notion introduced in past work [23] on kernel ridge regression. For a given
targeted error level δ > 0, it is natural to consider the first index d(δ) for which the associated
eigenvalue drops below δ2—that is, d(δ) := min{j ≥ 1|μj ≤ δ2}. The eigenvalue sequence is
said to be regular if2

∞∑

j=d(δ)+1

μj ≤ cd(δ)δ2(11)

2In fact, we can relax this to only require the minimizing δ in equation (12) to obey the tail bound.
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FIG. 1. Plot of the upper bound (10) on the mean-squared error versus the log regularization parameter logλ for

four different choices of the likelihood ratio bound B , in all cases with eigenvalues μj = (1/j)2, noise variance

σ 2 = 1 and sample size n = 8000. The points marked with ⋆ on each curve corresponds to the choice of λ∗(B)

that minimizes the upper bound. Note how this minimizing value shifts to the left as B increases above the standard

problem without covariate shift (B = 1).

holds for some universal constant c > 0. The class of kernels with regular eigenvalues in-
cludes kernels of finite-rank and those with various forms of polynomial or exponential decay
in their eigenvalues; all are widely used in practice. For kernels with regular eigenvalues, the
bound (10) implies that there is a universal constant c′ such that

∥∥f̂λ − f ⋆
∥∥2
Q ≤ c′

{
δ2∥∥f ⋆

∥∥2
H

+ σ 2B
d(δ) logn

n

}
where δ2 = λB.(12)

We verify this claim as part of proving Corollary 3.2 below.
This bound (12) enables us to make (near)-optimal choices of δ—and hence λ = δ2/B .

Let us summarize the outcome of this procedure for a few kernels of interest. In particular,
we say that a kernel has finite rank D if the eigenvalues μj = 0 for all j > D. The kernels
that underlie linear regression and polynomial regression more generally are of this type.
A richer family of kernels has eigenvalues that exhibit α-polynomial decay μj ≤ cj−2α for
some α > 1/2. This kind of eigenvalue decay is seen in various types of spline and Sobolev
kernels, as well as the Laplacian kernel. It is easy to verify that both of these families have
regular eigenvalues. To simplify the presentation, we assume ‖f ⋆‖H = 1.

COROLLARY 3.2 (Bounds for specific kernels).

(a) For a kernel with rank D, as long as σ 2D logn ≥ 10κ2, the choice λ = σ 2D logn
n

yields

an estimate f̂λ such that

∥∥f̂λ − f ⋆
∥∥2
Q ≤ cσ 2B

D logn

n
(13a)

with high probability.
(b) For a kernel with α-decaying eigenvalues, suppose that σ 2 is sufficiently large so that

λ = B− 1
2α+1 (

σ 2 logn
n

)
2α

2α+1 ≥ 10κ2/n. Then the estimate f̂λ obeys

∥∥f̂λ − f ⋆
∥∥2
Q ≤ c

(
σ 2B logn

n

) 2α
2α+1

(13b)

with high probability.
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PROOF. We begin by proving the upper bound (12). With the shorthand δ2 = λB , the
variance term in our bound (10) can be bounded as

1

80
vλ(B) = σ 2B

logn

n

∞∑

j=1

μj

μj + δ2
≤ σ 2B

logn

n

{
d(δ)∑

j=1

1 +
∞∑

j>d(δ)

μj

μj + δ2

}
,

where, by the definition of d(δ), we have split the eigenvalues into those that are larger than
δ2, and those that are smaller than δ2. By the definition of a regular kernel, the second term
can be upper bounded

∞∑

j>d(δ)

μj

μj + δ2
≤

1

δ2
c′d(δ)δ2 = c′d(δ).

Putting together the pieces yields 1
80vλ(B) ≤ c2σ

2B
logn

n
d(δ), for some universal constant c2.

Combining with the bias term yields the claim (12).
We now prove claims (13a) and (13b). For a finite-rank kernel, using the fact that d(δ) ≤ D

for any δ > 0, we can set λ = σ 2D logn
n

to obtain the claimed bound (13a). Now suppose that

the kernel has α-polynomial decay—that is, μj ≤ cj−2α for some c > 0. For any δ > 0, we
then have d(δ) ≤ c′(1/δ)1/α , and hence

δ2 + σ 2B
d(δ) logn

n
≤ δ2 + c′σ 2B

logn

n

(
1

δ

)1/α

.

By equating the two terms, we can solve for near-optimal δ: in particular, we set δ2 =
(
σ 2B logn

n
)

2α
2α+1 to obtain the claimed result. Notice that this choice of δ2 corresponds to

λ = δ2/B = B− 1
2α+1

(
σ 2 logn

n

) 2α
2α+1

,

as claimed in the corollary. �

3.2. Lower bounds with covariate shift for regular kernels. Thus far, we have established
a family of upper bounds on the unweighted KRR estimate, and derived concrete results for
various classes of regular kernels. We now establish that, for the class of regular eigenvalues,
the bounds achieved by the unweighted KRR estimator are minimax-optimal. Recall the def-
inition d(δ) = min{j ≥ 1|μj ≤ δ2}, and the notion of regular eigenvalues (11). For a Hilbert
space H, we let BH(1) denote the Hilbert norm ball of radius one.

THEOREM 3.3. For any B ≥ 1, there exists a pair (P,Q) with B-bounded likelihood

ratio (3) and an orthonormal basis {φj }j≥1 of L2(Q) such that for any regular sequence of

kernel eigenvalues {μj }j≥1, we have

inf
f̂

sup
f ⋆∈BH(1)

E
[∥∥f̂ − f ⋆

∥∥2
Q

]
≥ c inf

δ>0

{
δ2 + σ 2B

d(δ)

n

}
.(14)

See Appendix 1 for the proof of this claim.
Comparing the lower bound (14) to our achievable result (12) for the unweighted KRR es-

timate, we see that—with an appropriate choice of the regularization parameter λ—the KRR
estimator is minimax optimal up to a logn term. In particular, it is straightforward to derive
the following consequences of Theorem 3.3, which parallel the guarantees in Corollary 3.2:
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• For a finite-rank kernel, the minimax risk for B-bounded covariate shift satisfies the lower
bound

inf
f̂

sup
f ⋆∈BH(1)

E
[∥∥f̂ − f ⋆

∥∥2
Q

]
≥ cσ 2B

D

n
.

• For a kernel with α-polynomial eigenvalues, the minimax risk for B-bounded covariate
shift satisfies the lower bound

inf
f̂

sup
f ⋆∈BH(1)

E
[∥∥f̂ − f ⋆

∥∥2
Q

]
≥ c

(
σ 2B

n

) 2α
2α+1

.

Note that both of these minimax lower bounds reduce to the known lower bounds [23] in the
case of no covariate shift (i.e., B = 1).

3.3. Constrained kernel regression is suboptimal. In the absence of covariate shift, pro-
cedures based on empirical risk minimization with explicit constraints are also known to be
minimax-optimal. In the current setting, one such estimator is the constrained kernel regres-
sion estimate

f̂erm := arg min
f ∈BH(1)

{
1

n

n∑

i=1

(
f (xi) − yi

)2
}
.(15)

Without covariate shift and for any regular kernel, this constrained empirical risk minimiza-
tion procedure is minimax-optimal over all functions f ⋆ with ‖f ⋆‖H ≤ 1.

In the presence of covariate shift, this minimax-optimality turns out to be false. In particu-
lar, suppose that the eigenvalues decay as μj = (1/j)2, so that our previous results show that

the minimax risk for B-bounded likelihood ratios scales as (Bσ 2

n
)2/3. It turns out that there

exists B-bounded pair (P,Q) and an associated kernel class with the prescribed eigendecay
for which the constrained estimator (15) is suboptimal for a broad range of (B,n) pairs. In
the following statement, we use c1, c2 to denote universal constants.

THEOREM 3.4. Suppose ‖f ⋆‖H = 1 and σ 2 = 1. For any B ∈ [c1(logn)2, c2n
2/3], there

exists a B-bounded pair (P,Q) and RKHS with eigenvalues μj ≤ (1/j2) such that

sup
f ⋆∈BH(1)

E
[∥∥f̂erm − f ⋆

∥∥2
Q

]
≥ c3

B3

n2
.(16)

See Appendix 2 for the proof of this negative result.
In order to appreciate some implications of this theorem, suppose that we use it to construct

ensembles with Bn ≍ n2/3. The lower bound (16) then implies that over this sequence of
problems, the maximal risk of f̂erm is bounded below by a universal constant. On the other
hand, if we apply the unweighted KRR procedure, then we obtain consistent estimates, in
particular with L2(Q)-error that decays as

(
Bn

n

)2/3

=
(

n2/3

n

)2/3

= n−2/9.

It is worth understanding why the constrained form of KRR is suboptimal, while the regu-
larized form is minimax-optimal. Recall from Corollary 3.2 that achieving minimax-optimal
rates with KRR requires particular choices of the regularization parameter λ∗(B), ones that
decrease as B increases (see Figure 1). This behavior suggests that the Hilbert norm ‖f̂λ‖H
of the regularized KRR estimate with optimal choice of λ should grow significantly above
‖f ⋆‖H = 1 when we apply this method.
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FIG. 2. Results based on computing the regularized KRR estimate for the “bad” problems, indexed by the pair

(n,B), that underlie the proof of Theorem 3.4. Each curve shows the squared Hilbert norm of the regularized KRR

estimate ‖f̂λ‖2
H

, computed with λ = ( 4
n
√

B
)2/3, versus the likelihood ratio bound B . Each curve corresponds to

a different choice of sample size n as indicated in the legend.

In order to confirm this intuition, we performed some illustrative simulations over the
ensembles, indexed by the pair (B,n), that underlie the proof of Theorem 3.4; see Ap-
pendix 2 for the details. With σ 2 = 1 remaining fixed, for each given pair (B,n), we sim-
ulated regularized kernel ridge regression with the choice λ = ( 4

n
√

B
)2/3, as suggested by

Corollary 3.2. In Figure 2, for each fixed n, we plot the squared Hilbert norm ‖f̂λ‖2
H of

the regularized KRR estimate versus the parameter B . We vary the choice of sample size
n ∈ {8000,16000,32000,64000,128000}, as indicated in the figure legend. In all of these
curves, we see that the squared Hilbert norm is increasing as a polynomial function of B .
This behavior is to be expected, given the suboptimality of the constrained KRR estimate
with a fixed radius.

4. Unbounded likelihood ratios. Thus far, our analysis imposed the B-bound (3) on
the likelihood ratio. In practice, however, it is often the case that the likelihood ratio is un-
bounded. As a simple univariate example, suppose that the target distribution Q is standard
normal N (0,1), whereas the source distribution P takes the form N (0,0.9). It is easy to see
that the likelihood ratio ρ(x) tends to ∞ as |x| → ∞. On the other hand, the second moment
of the likelihood ratio under P remains bounded, so that χ2-condition (4) applies.

The key to the success of the unweighted KRR estimator (5) in the bounded likelihood ratio
case is the nice relationship between the covariance �P := EX∼P [φ(X)φ(X)⊤] of the source
distribution and the covariance I of the target distribution, namely �P � 1

B
I . In contrast,

such a nice relationship (with B replaced by V 2) does not appear to hold with unbounded like-
lihood ratios. It is therefore natural to consider the likelihood-reweighted estimate (6), as pre-
viously introduced in Section 2.3, that ensures the nice identity EX∼P [ρ(X)φ(X)φ(X)⊤] =
I . In contrast to the unweighted KRR estimator, it requires knowledge of the likelihood ra-
tio, but we will see that—when combined with a suitable form of truncation—it achieves
minimax-optimal rates (up to logarithmic factors) over the much larger classes of χ2-bounded
source-target pairs.

As noted before, one concern with likelihood-reweighted estimators is that they can lead to
substantial inflation of the variance, in particular due to the multiplication by the potentially
unbounded quantity ρ(x). For this reason, it is natural to consider truncation: more precisely,
for a given τn > 0, we define the truncated likelihood ratio

ρτn(x) :=
{
ρ(x) if ρ(x) ≤ τn,

τn otherwise.
(17)
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We then consider the family of estimators

f̂ rw
λ := arg min

f ∈H

{
1

n

n∑

i=1

ρτn(xi)
(
f (xi) − yi

)2 + λ‖f ‖2
H

}
,(18)

where λ > 0, along with the truncation level τn, are parameters to be specified.
We analyze the behavior of this estimator for kernels whose eigenfunctions are 1-

uniformly bounded in sup-norm, meaning that

‖φj‖∞ := sup
x∈X

∣∣φj (x)
∣∣≤ 1 for all j = 1,2, . . . .(19)

Our choice of the constant 1 is for notational simplicity. Although there exist kernels whose
eigenfunctions are not uniformly bounded, there are many kernels for which this condition
does hold. Whenever the domain X is compact and the eigenfunctions are continuous, this
condition will hold. Another class of examples is given by convolutional kernels (i.e., ker-
nels of the form K (x, z) = (x − z) for some  : X → R), which have sinusoids as their
eigenfunctions, and thus satisfy this condition.

Our theorem on the truncated-reweighted KRR estimate (18) involves the kernel complex-
ity function (δ,μ) :=

∑∞
j=1 min{δ2,μj‖f ⋆‖2

H}, and works for any solution δn > 0 to the

inequality M(δ) ≤ δ2/2, where

M(δ) := c0

√
σ 2V 2 log3(n)

n
(δ,μ).(20)

Here c0 is a universal constant, whose value is specified via the proof.
Below, we present the performance guarantee of f̂ rw

λ in the large noise regime (i.e., when
σ 2 ≥ κ2‖f ⋆‖2

H) to simplify the statement. Theoretical guarantees for all ranges of σ 2 can be
found in Appendix 4.

THEOREM 4.1. Consider a kernel with sup-norm bounded eigenfunctions (19), and a

source-target pair with EP [ρ2(X)] ≤ V 2. Further assume that the noise level obeys σ 2 ≥
κ2‖f ⋆‖2

H. Then the estimate f̂ rw
λ with truncation τn =

√
nV 2 and regularization λ‖f ⋆‖2

H ≥
δ2
n/3 satisfies the bound

∥∥f̂ rw
λ − f ⋆

∥∥2
Q ≤ δ2

n + 3λ
∥∥f ⋆

∥∥2
H

(21)

with probability at least 1−cn−10. Here, we recall that δn > 0 is any solution to the inequality

M(δ) ≤ δ2/2, where

M(δ) = c0

√
σ 2V 2 log3(n)

n
(δ,μ).

See Section 5.2 for the proof of this claim. In Appendix 5.2, we also present a corollary
which provides a corresponding expectation bound for the reweighted estimator f̂ rw

λ for such
V 2-bounded covariate shifts.

To appreciate the connection to our previous analysis, in the proof of Corollary 4.2 below,
we show that for any regular sequence of eigenvalues and ‖f ⋆‖H = 1, we have

(δ,μ) ≤ c′d(δ)δ2(22)

for some universal constant c′. Moreover, the condition M(δ) ≤ δ2/2 can be verified by
checking the inequality

√
σ 2V 2 log3(n)

n
d(δ) ≤ c1δ.(23)

This further allows us to obtain the rates of estimation over specific kernel classes.
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COROLLARY 4.2. Consider kernels with sup-norm bounded eigenfunctions (19).

(a) For a kernel with rank D, the truncated-reweighted estimator achieves with high

probability

∥∥f̂ rw
λ − f ⋆

∥∥2
Q ≤ c′ DV 2 log3(n)σ 2

n
(24)

provided that λ = c
DV 2 log3(n)σ 2

n
.

(b) For a kernel with α-polynomial eigenvalues, we have with high probability

∥∥f̂ rw
λ − f ⋆

∥∥2
Q ≤ c′

(
V 2 log3(n)

n
σ 2
) 2α

2α+1
,(25)

provided that λ = c(
V 2 log3(n)

n
σ 2)

2α
2α+1 .

PROOF. We begin by verifying the claim (22). Recalling the definition of d(δ) as the
smallest integer for which μj ≤ δ2, we can write

(δ,μ) =
d(δ)∑

j=1

min
{
δ2,μj

}
+

∞∑

j=d(δ)+1

min
{
δ2,μj

}
≤ d(δ)δ2 + cd(δ)δ2,

where the bound on the second sum follows from the regularity condition. This completes
the proof of the bound (22).

Given our bound (22), it is straightforward to verify the claim (23).
We now prove the bounds (24) and (25). For the finite rank case, the kernel complexity

measure is bounded as (δ,μ) ≤ Dδ2, which implies δ2
n ≤ c

DV 2 log3(n)σ 2

n
for some universal

constant c. Apply Theorem 4.1 to obtain the desired rate. Now we move on to the kernel with
α-polynomial eigenvalues. We know from the proof of Corollary 3.2 that d(δ) ≤ c(1/δ)1/α ,

and hence (δ,μ) ≤ c′δ2−1/α . This implies δ2
n ≤ c(

V 2 log3 n
n

σ 2)
2α

2α+1 , which together with
Theorem 4.1 yields the claim. �

Corollary 4.2 showcases that the reweighted KRR estimator is minimax optimal (up to
log factors) over this more general χ2-bounded family. This can be seen from the lower
bound established in Theorem 3.3 and the fact that the χ2-bounded family is a larger family
compared to the uniformly bounded family.

5. Proofs. In this section, we provide the proofs of our two sets of upper bounds on
different estimators. Section 5.1 is devoted to the proof of Theorem 3.1 on upper bounds
on unweighted KRR for B-bounded likelihood ratios, whereas Section 5.2 is devoted to the
proof of Theorem 4.1 on the performance of LR-reweighted KRR with truncation.

5.1. Proof of Theorem 3.1. Define the empirical covariance operator3

�̂P :=
1

n

n∑

i=1

φ(xi)φ(xi)
⊤,(26)

the population covariance operator �P := EX∼P [φ(X)φ(X)⊤], and the diagonal operator
M := diag({μj }j≥1).

3In this proof, all the operators are defined with respect to the space ℓ2(N).
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Before we embark on the proof, we single out two important properties regarding �P and
�̂P that will be useful in later proofs. For a given λ > 0, we define the event

E(λ) :=
{
M

1/2
�̂P M

1/2 + λI � 1

2

(
M

1/2
�P M

1/2 + λI
)}

,(27)

where I is the identity operator on ℓ2(N).

LEMMA 5.1. For any B-bounded source-target pair (3), we have the deterministic lower

bound

�P � 1

B
I .(28a)

If, in addition, the kernel is κ-uniformly bounded (9), then whenever nλ ≥ 10κ2, the event

E(λ) defined in equation (27) satisfies

P
[
E(λ)

]
≥ 1 − 28

κ2

λ
e
− nλ

16κ2 .(28b)

See Section 5.1.3 for the proof of this claim.
Equipped with Lemma 5.1, we now proceed to the proof of the theorem. In terms of the

basis {φj }j≥1, the KRR estimate has the expansion f̂λ =
∑∞

j=1 θ̂jφj , where θ̂ = {θ̂j }j≥1 is

a sequence of coefficients in ℓ2(N). By the optimality conditions for the KRR problem, we
have

θ̂ − θ⋆ = −λ
(
�̂P + λM

−1)−1
M

−1θ⋆ +
(
�̂P + λM

−1)−1

(
1

n

n∑

i=1

wiφ(xi)

)
.(29)

By the triangle inequality, we have the upper bound ‖θ̂ − θ⋆‖2
2 ≤ 2(T1 + T2), where

T1 :=
∥∥λ
(
�̂P + λM

−1)−1
M

−1θ⋆
∥∥2

2, and

T2 :=
∥∥∥∥∥
(
�̂P + λM

−1)−1

(
1

n

n∑

i=1

wiφ(xi)

)∥∥∥∥∥

2

2

.

In terms of this decomposition, it suffices to establish that the following bounds:

T1
(a)
≤ 2λB

∥∥f ⋆
∥∥2
H

, and T2
(b)
≤ 40(logn)σ 2

n

∞∑

j=1

μj

μj/B + λ
,(30)

hold with probability at least 1 − 28κ2

λ
e
− nλ

16κ2 − n−10.

5.1.1. Proof of the bound (30)(a). We establish that this bound holds conditionally on
the event E(λ). Following some algebraic manipulations, we have

T1 = λ2∥∥M1/2(
M

1/2
�̂P M

1/2 + λI
)−1

M
−1/2θ⋆

∥∥2
2

(i)
≤ λ2∥∥f ⋆

∥∥2
H

∣∣∣∣∣∣M1/2(
M

1/2
�̂P M

1/2 + λI
)−1∣∣∣∣∣∣2

2

(ii)
≤ λ

∥∥f ⋆
∥∥2
H

∣∣∣∣∣∣M1/2(
M

1/2
�̂P M

1/2 + λI
)−1/2∣∣∣∣∣∣2

2

(iii)
≤ 2λ

∥∥f ⋆
∥∥2
H

∣∣∣∣∣∣M1/2(
M

1/2
�P M

1/2 + λI
)−1

M
1/2∣∣∣∣∣∣

2.
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Here inequality (i) follows from the fact that ‖M−1/2θ⋆‖2 = ‖f ⋆‖H; the second step (ii)
uses the fact that M

1/2
�̂P M

1/2 + λI � λI , and step (iii) follows from the fact that we are
conditioning on the event E(λ).

Lemma 5.1 also guarantees that �P � 1
B

I , whence

T1 ≤ 2λ
∥∥f ⋆

∥∥2
H

∣∣∣∣
∣∣∣∣
∣∣∣∣M

1/2
(

1

B
M + λI

)−1

M
1/2

∣∣∣∣
∣∣∣∣
∣∣∣∣
2
= 2λ · max

j≥1

{
μj

μj

B
+ λ

}
≤ 2λB

∥∥f ⋆
∥∥2
H

.

This establishes the claim (30)(a).

5.1.2. Proof of the bound (30)(b). Define the random vector

W :=
(
�̂P + λM

−1)−1

(
1

n

n∑

i=1

wiφ(xi)

)
.

Conditioned on the covariates {xi}ni=1, W is a zero-mean sub-Gaussian random variable with
covariance operator

� :=
σ 2

n

(
�̂P + λM

−1)−1
�̂P

(
�̂P + λM

−1)−1
.

Consequently, by the Hanson–Wright inequality in the RKHS (cf. Theorem 2.6 in the paper
[3]), we have

P
[
T2 ≥ 20(logn)trace(�)|{xi}ni=1

]
≤

1

n10
,(31)

where the probability is taken over the noise variables.
It remains to upper bound the trace. We have the relation

trace(�) = trace

(
σ 2

n

(
�̂P + λM

−1)−1
�̂P

(
�̂P + λM

−1)−1
)
,

so that

trace(�) ≤ trace

(
σ 2

n

(
�̂P + λM

−1)−1(
�̂P + λM

−1)(
�̂P + λM

−1)−1
)

= trace

(
σ 2

n

(
�̂P + λM

−1)−1
)

= trace(
σ 2

n

(
M

1/2(
M

1/2
�̂P M

1/2 + λI
)−1

M
1/2).

Under the event E(λ), we have M
1/2

�̂P M
1/2 +λI � 1

2(M1/2
�P M

1/2 +λI ), which implies

trace(�) ≤ 2
σ 2

n
trace

(
M

1/2(
M

1/2
�P M

1/2 + λI
)−1

M
1/2)

(i)
≤ 2

σ 2

n
trace

(
M

1/2
(

1

B
M + λI

)−1

M
1/2

)

(ii)= 2
σ 2

n

∞∑

j=1

μj
μj

B
+ λ

.

Here step (i) follows since �P � 1
B

I , and step (ii) follows from a direct calculation. Substi-
tuting this upper bound on the trace into the tail bound (31) yields the claimed bound (30)(b).
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5.1.3. Proof of Lemma 5.1. We begin with the proof of the lower bound (28a). Since
{φj }j≥1 is an orthonormal basis of L2(Q), we have

EX∼Q

[
φ(X)φ(X)⊤

]
= EX∼P

[
ρ(X)φ(X)φ(X)⊤

]
= I .

Thus, the B-boundedness of the likelihood ratio (3) implies that

I � EX∼P

[
Bφ(X)φ(X)⊤

]
= B�P ,

which is equivalent to the claim (28a).
Next, we prove the lower bound (27). We introduce the shorthand notation

�̂λ := M
1/2

�̂P M
1/2 + λI , and �λ := M

1/2
�P M

1/2 + λI

along with the matrix � := �
−1/2
λ (�̂λ − �λ)�

−1/2
λ . Recalling that ||| · |||2 denotes the ℓ2-

operator norm of a matrix, we first observe that {|||�|||2 ≤ 1
2} ⊆ E . Consequently, it suffices to

show that |||�|||2 ≤ 1
2 with high probability.

The matrix � can be written as the normalized sum � = 1
n

∑n
i=1 Zi , where the random

operators

Zi := �
−1/2
λ M

1/2(φ(xi)φ(xi)
⊤ − �P

)
M

1/2
�

−1/2
λ

are i.i.d. The operator norm of each term can be bounded as

|||Zi |||2 ≤ 2 sup
x∈X

∣∣∣∣∣∣�−1/2
λ M

1/2φ(x)φ(x)⊤M
1/2

�
−1/2
λ

∣∣∣∣∣∣
2

= 2 sup
x∈X

∥∥�−1/2
λ M

1/2φ(x)
∥∥2

2(32)

≤ 2κ2∣∣∣∣∣∣�−1/2
λ

∣∣∣∣∣∣2
2 ≤ 2κ2

λ
=: L,

where the final inequality follows from the assumption that supx∈X ‖M1/2φ(x)‖2
2 ≤ κ2, and

the fact that �λ � λI .
On the other hand, the variance of Zi can be bounded as

E
[
Z

2
i

]
� E

[(
�

−1/2
λ M

1/2φ(X)φ(X)⊤M
1/2

�
−1/2
λ

)2]

= E
[
�

−1/2
λ M

1/2φ(X)φ(X)⊤M
1/2

�
−1
λ M

1/2φ(X)φ(X)⊤M
1/2

�
−1/2
λ

]

� E
[
�

−1/2
λ M

1/2φ(X)φ(X)⊤M
1/2

�
−1/2
λ

]
· sup
x∈X

{
φ(x)⊤M

1/2
�

−1
λ M

1/2φ(x)
}

�
κ2

λ
�

−1/2
λ M

1/2
�P M

1/2
�

−1/2
λ =: V ,

where the last inequality follows by applying the bound (32) on supx∈X ‖�−1/2
λ M

1/2φ(x)‖2
2.

Suppose that we can show that

trace(V ) ≤
κ2

λ
·
κ2

λ
;(33a)

|||V |||2 ≤
κ2

λ
.(33b)

We can then apply a dimension-free matrix Bernstein inequality (see Lemma 7.1) with t =
1/2 to obtain the tail bound

P

[
|||�|||2 ≥

1

2

]
≤ 28

κ2

λ
exp

(
−

nλ

16κ2

)
,

as long as nλ ≥ 10κ2. Thus, the only remaining detail is to prove the bounds (33a) and (33b).
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Proof of the bound (33a). Using the definition of V , we have

trace(V ) =
κ2

λ
trace

(
�

−1/2
λ M

1/2
�P M

1/2
�

−1/2
λ

)

=
κ2

λ
EP

[
trace

(
�

−1/2
λ M

1/2φ(x)φ(x)⊤M
1/2

�
−1/2
λ

)]

≤ κ2

λ
·
κ2

λ
.

Here we have again applied the bound supx∈X ‖�−1/2
λ M

1/2φ(x)‖2
2 ≤ κ2/λ.

Proof of the bound (33b). Recalling the definition of �λ, we see that |||�−1/2
λ M

1/2 ×
�P M

1/2
�

−1/2
λ |||2 ≤ 1, and hence

|||V |||2 =
κ2

λ

∣∣∣∣∣∣�−1/2
λ M

1/2
�P M

1/2
�

−1/2
λ

∣∣∣∣∣∣
2 ≤

κ2

λ
,

which is the claimed upper bound on |||V |||2.

5.2. Proof of Theorem 4.1. We now turn to the proof of our guarantee on the truncated
LR-reweighted estimator. At the core of the proof is a uniform concentration result, one that
holds within a local ball

G(r) :=
{
f ∈H|

∥∥f − f ⋆
∥∥
Q ≤ r, and

∥∥f − f ⋆
∥∥
H

≤ 3
∥∥f ⋆

∥∥
H

}

around the true regression function f ⋆.

LEMMA 5.2. Fixing any r > 0, we have

sup
g∈G(r)

{
∥∥g − f ⋆

∥∥2
Q +

1

n

n∑

i=1

ρτn(xi)
[(

f ⋆(xi) − yi

)2 −
(
g(xi) − yi

)2]
}

≤ M(r)(34)

with probability at least 1 − cn−10.

See Section 5.2.1 for the proof of this lemma.
Taking this lemma as given, we now complete the proof of the theorem. Define the regu-

larized radius δλ :=
√

δ2
n + 3λ‖f ⋆‖2

H, and denote by E(δλ) the “good” event that the relation
(34) holds at radius δλ. We immediately point out an important property of the regularized
radius δλ, namely M(δλ) ≤ (1/2) · δ2

λ. To see this, note that r �→ M(r)/r is nonincreasing
in r , and hence

M(δλ)

δλ

≤
M(δn)

δn

≤
1

2
δn ≤

1

2
δλ.

Suppose that conditioned on E(δλ), the following inequality holds:

(35) inf
f ∈H,f /∈G(δλ)

1

n

n∑

i=1

ρτn(xi)
{(

f (xi) − yi

)2 −
(
f ⋆(xi) − yi

)2}+ λ‖f ‖2
H − λ

∥∥f ⋆
∥∥2
H

> 0.

It then follows that that ‖f̂ − f ⋆‖Q ≤ δλ, as desired. Consequently, the remainder of our
proof is devoted to establishing that inequality (35) holds conditioned on E(δλ).

Given any function f ∈ H and f /∈ G(δλ), there exists an α ≥ 1 such that the shifted
function

f̃ := f ⋆ + 1

α

(
f − f ⋆)
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lies in the set H, and more importantly f̃ lies on the boundary of G(δλ). This follows from
the convexity of the two sets H and G(δλ). Since f̃ is a convex combination of f and f ⋆,
Jensen’s inequality implies that

ρτn(xi)
{(

f̃ (xi) − yi

)2 −
(
f ⋆(xi) − yi

)2}+ λ‖f̃ ‖2
H − λ

∥∥f ⋆
∥∥2
H

≤
1

α

{
ρτn(xi)

{(
f (xi) − yi

)2 −
(
f ⋆(xi) − yi

)2}+ λ‖f ‖2
H − λ

∥∥f ⋆
∥∥2
H

}
.

Consequently, in order to establish the claim (35), it suffices to prove that the quantity

T :=
1

n

n∑

i=1

ρτn(xi)
{(

f ⋆(xi) − yi

)2 −
(
f̃ (xi) − yi

)2}+ λ
∥∥f ⋆

∥∥2
H

− λ‖f̃ ‖2
H

is negative. Since f̃ lies on the boundary of G(δλ), we can split the proof into two cases: (1)
‖f̃ −f ⋆‖Q = δλ, while ‖f̃ −f ⋆‖H ≤ 3‖f ⋆‖H, and (2) ‖f̃ −f ⋆‖Q ≤ δλ, while ‖f̃ −f ⋆‖H =
3‖f ⋆‖H.

Case 1: ‖f̃ − f ⋆‖Q = δλ, while ‖f̃ − f ⋆‖H ≤ 3‖f ⋆‖H. By adding and subtracting terms,
we have

T =
[

1

n

n∑

i=1

ρτn(xi)
{(

f ⋆(xi) − yi

)2 −
(
f̃ (xi) − yi

)2}+
∥∥f̃ − f ⋆

∥∥2
Q

]

−
∥∥f̃ − f ⋆

∥∥2
Q + λ

∥∥f ⋆
∥∥2
H

− λ‖f̃ ‖2
H

(i)
≤ M(δλ) − δ2

λ + λ
∥∥f ⋆

∥∥2
H

(ii)
< −

1

2
δ2
λ + λ

∥∥f ⋆
∥∥2
H

(iii)
< 0,

where step (i) follows from conditioning on the event E(δλ), the equality ‖f̃ − f ⋆‖2
Q = δ2

λ,

and nonpositivity of λ‖f̃ ‖2
H; step (ii) follows from the property M(δλ) ≤ (1/2) · δ2

λ and step
(iii) uses the definitions of δλ and λ.

Case 2: ‖f̃ −f ⋆‖Q ≤ δλ, while ‖f̃ −f ⋆‖H = 3‖f ⋆‖H. By the same addition and subtrac-
tion as above, we have

T =
[

1

n

n∑

i=1

ρτn(xi)
{(

f ⋆(xi) − yi

)2 −
(
f̃ (xi) − yi

)2}+
∥∥f̃ − f ⋆

∥∥2
Q

]

−
∥∥f̃ − f ⋆

∥∥2
Q + λ

∥∥f ⋆
∥∥2
H

− λ‖f̃ ‖2
H

(i)
≤ M(δλ) + λ

∥∥f ⋆
∥∥2
H

− λ‖f̃ ‖2
H

(ii)
<

1

2
δ2
λ − 3λ

∥∥f ⋆
∥∥2
H

.

Here, step (i) again follows from the conditioning on the event E(δλ) and the assumption that
‖f̃ − f ⋆‖Q ≤ δλ. Step (ii) relies on the facts that M(δλ) ≤ (1/2) · δ2

λ, ‖f ⋆‖H = ‖f ⋆‖H, and
that ‖f̃ ‖H ≥ 2‖f ⋆‖H. The latter is a simple consequence of ‖f̃ − f ⋆‖H = 3‖f ⋆‖H and the
triangle inequality. Substitute in the definitions of δλ and λ to see the negativity of T .

Combine the two cases to finish the proof of the claim (35).

5.2.1. Proof of Lemma 5.2. Define the shifted function class F⋆ := H − f ⋆, along with
its r-localized version

F⋆(r) :=
{
h ∈ F⋆|‖h‖Q ≤ r, and ‖h‖H ≤ 3

∥∥f ⋆
∥∥
H

}
.
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We begin by observing that
(
f ⋆(xi) − yi

)2 −
(
g(xi) − yi

)2 = 2wi

[
g(xi) − f ⋆(xi)

]
−
(
g(xi) − f ⋆(xi)

)2
,

which yields the following equivalent formulation of the claim in Lemma 5.2:

sup
h∈F⋆(r)

{
1

n

n∑

i=1

[
2wiρτn(xi)h(xi) + ‖h‖2

Q − ρτn(xi)h
2(xi)

]
}

≤ M(r).(36)

By the triangle inequality, it suffices to show that T1 + T2 ≤ M(r), where

T1 := sup
h∈F⋆(r)

∣∣∣∣∣
2

n

n∑

i=1

wiρτn(xi)h(xi)

∣∣∣∣∣, and

T2 := sup
h∈F⋆(r)

∣∣∣∣∣
1

n

n∑

i=1

{
‖h‖2

Q − ρτn(xi)h
2(xi)

}
∣∣∣∣∣.

More precisely, the core of our proof involves establishing the following two bounds:

T1 ≤ cσ

√
V 2 log3(n)

n

·
{ ∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
}1/2

with probability at least 1 − n−10, and

(37a)

T2 ≤ c

√
V 2 log3(n)

n

·
∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
with probability at least 1 − n−10.

(37b)

In conjunction, these two bounds ensure that

T1 + T2 ≤ c

√
V 2 log3(n)

n
·

∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}

+ c

√√√√
∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}V 2 log3(n)

n
σ 2.

(38)

Since the kernel function is κ2-bounded, we have

∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
≤
∥∥f ⋆

∥∥2
H

∞∑

j=1

μj ≤ κ2∥∥f ⋆
∥∥2
H

,

which together with the assumption σ 2 ≥ κ2‖f ⋆‖2
H implies that

T1 + T2 ≤ 2c

√√√√
∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}V 2 log3(n)

n
σ 2.

Therefore the bound (36) holds.
It remains to prove the bounds (37a) and (37b). The proofs make use of some elementary

properties of the localized function class F⋆(r), which we collect here. For any h ∈ F⋆(r),
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we have

∣∣h(x)
∣∣≤

√√√√10
∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
, and(39a)

∞∑

j=1

θ2
j

min{r2,μj‖f ⋆‖2
H}

≤ 10, where h =
∞∑

j=1

θjφj .(39b)

See Appendix 3 for the proof of these elementary claims.

5.2.2. Proof of inequality (37b). We begin by analyzing the term T2. By the triangle
inequality, we have the upper bound T2 ≤ T2a + T2b, where

T2a := sup
h∈F⋆(r)

∣∣‖h‖2
Q −EP

[
ρτn(X)h2(X)

]∣∣, and

T2b := sup
h∈F⋆(r)

∣∣∣∣∣EP

[
ρτn(X)h2(X)

]
−

1

n

n∑

i=1

ρτn(xi)h
2(xi)}

∣∣∣∣∣.

Note that T2a is a deterministic quantity, measuring the bias induced by truncation, whereas
T2b is the supremum of an empirical process. We split our proof into analysis of these two
terms. In particular, we establish the following bounds:

T2a ≤ c

√
V 2

n

∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
, and(40a)

T2b ≤ c

√
V 2 log2(n)

n

∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
with probability at least 1 − n−10.(40b)

Combining these two bounds yields the claim (37b).

Proof of inequality (40a). We begin by proving the claimed upper bound on T2a . Note that

T2a ≤ sup
h∈F⋆(r)

∣∣‖h‖2
Q −EQ

[
1
{
ρ(X) ≤ τn

}
h2(X)

]∣∣

+ τn · sup
h∈F⋆(r)

∣∣EP

[
1
{
ρ(X) > τn

}
h2(X)

]∣∣

= sup
h∈F⋆(r)

EQ

[
1
{
ρ(X) > τn

}
h2(X)

]
+ τn · sup

h∈F⋆(r)

∣∣EP

[
1
{
ρ(X) > τn

}
h2(X)

]∣∣

≤ EQ

[
1
{
ρ(X) > τn

}]
· sup
h∈F⋆(r)

‖h‖2
∞ + τn ·EP

[
1
{
ρ(X) > τn

}]
· sup
h∈F⋆(r)

‖h‖2
∞

≤
V 2

τn

· 10
∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
+ τn ·

V 2

(τn)2
· 10

∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
,

where the last step follows from a combination of Markov’s inequality, Chebyshev’s inequal-
ity, and the ℓ∞-norm bound (39a). Recalling that τn =

√
nV 2, the bound (40a) follows.

Proof of the bound (40b). We prove the claimed bound on T2b by first bounding its mean
E[T2b], and then providing a high-probability bound on the deviation T2b −E[T2b].

Bound on the mean: By a standard symmetrization argument (see, e.g., Chapter 4 in the
book [22]), we have the upper bound

E[T2b] ≤
2

n
E

[
sup

h∈F⋆(r)

∣∣∣∣∣

n∑

i=1

εiρτn(xi)h
2(xi)

∣∣∣∣∣

]
,
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where {εi}ni=1 is an i.i.d. sequence of Rademacher variables. Now observe that

sup
h∈F⋆(r)

∣∣∣∣∣

n∑

i=1

εiρτn(xi)h
2(xi)

∣∣∣∣∣≤ sup
h̃,h∈F⋆(r)

Z(h, h̃),

where above we have defined

Z(h, h̃) :=
∣∣∣∣∣

n∑

i=1

εiρτn(xi)h̃(xi)h(xi)

∣∣∣∣∣.

Writing h̃ =∑∞
j=1 θ̃jφj , we have

Z(h, h̃) =
∣∣∣∣∣

∞∑

j=1

θ̃j

{
n∑

i=1

εiρτn(xi)φj (xi)h(xi)

}∣∣∣∣∣

=
∣∣∣∣∣

∞∑

j=1

θ̃j√
min{r2,μj‖f ⋆‖2

H}
·
√

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
{

n∑

i=1

εiρτn(xi)φj (xi)h(xi)

}∣∣∣∣∣

≤
√

10

{ ∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
·
{

n∑

i=1

εiρτn(xi)φj (xi)h(xi)

}2}1/2

,

where the final step follows by combining the Cauchy–Schwarz inequality with the bound
(39b). We now repeat the same argument to upper bound the inner term involving h; in
particular, we have

{
n∑

i=1

εiρτn(xi)φj (xi)h(xi)

}2

=
{ ∞∑

k=1

θk

(
n∑

i=1

εiρτn(xi)φj (xi)φk(xi)

)}2

≤ 10 ·
∞∑

k=1

{
min

{
r2,μk

∥∥f ⋆
∥∥2
H

}
(

n∑

i=1

εiρτn(xi)φj (xi)φk(xi)

)2}
.

Putting together the pieces now leads to the upper bound

2

n
sup

h∈F⋆(r)

∣∣∣∣∣

n∑

i=1

εiρτn(xi)h
2(xi)

∣∣∣∣∣

≤
2

n
sup

h,h̃∈F⋆(r)

Z(h, h̃)

≤
20

n

{ ∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}

·
∞∑

k=1

min
{
r2,μk

∥∥f ⋆
∥∥2
H

}
(

n∑

i=1

εiρτn(xi)φj (xi)φk(xi)

)2}1/2

.
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By taking expectations of both sides and applying Jensen’s inequality, we find that

E[T2b] ≤
20

n

{ ∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}

·
∞∑

k=1

min
{
r2,μk

∥∥f ⋆
∥∥2
H

}
EX,ε

(
n∑

i=1

εiρτn(xi)φj (xi)φk(xi)

)2}1/2

.

(41)

We now observe that

EX,ε

[(
n∑

i=1

εiρτn(xi)φj (xi)φk(xi)

)2]
=

n∑

i=1

EX,ε

[
ε2
i

(
ρτn(xi)

)2
φ2

j (xi)φ
2
k (xi)

]

≤
n∑

i=1

EX,ε

[
ρ2(xi)

]
≤ nV 2,

where we have used the fact that ‖φj‖∞ ≤ 1 for all j ≥ 1, and that ρτn(xi) ≤ ρ(xi). Substi-
tuting this upper bound into our earlier inequality (41) yields

E[T2b] ≤ 20

√
V 2

n
·

∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
.(42)

Bounding the deviation term: Recall that for any h ∈ F⋆, we have

‖h‖∞ ≤

√√√√10
∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
.

Consequently, we have

sup
h∈F⋆(r)

∣∣EQ

[
1
{
ρ(X) ≤ τn

}
h2(X)

]
− ρτn(xi)h

2(xi)
∣∣≤ 10τn

∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}

= 10
√

nV 2
∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
.

In addition, we have

sup
h∈F⋆(r)

n∑

i=1

E
[{
EQ

[
1
{
ρ(X) ≤ τn

}
h2(X)

]
− ρτn(xi)h

2(xi)
}2]

≤ sup
h∈F⋆(r)

n∑

i=1

E
[(

ρτn(xi)
)2

h4(xi)
]

≤ 100nV 2

( ∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
)2

,

where we have applied the ℓ∞-norm bound (39a) as well as the V 2-condition on the likeli-
hood ratio. These two facts together allow us to apply Talagrand’s concentration results (cf.
Lemma 7.2) and obtain

P

[
T2b ≥ E[T2b] +

t

n

]

≤ exp
(
−

t2

3000nV 2(
∑∞

j=1 min{r2,μj‖f ⋆‖2
H

})2 + 900
√

nV 2
∑∞

j=1 min{r2,μj‖f ⋆‖2
H

}t

)
.

(43)
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Completing the proof of the bound (40b): We now have the ingredients to complete the
proof of the claim (40b). In particular, by combining the upper bound (42) on the mean with
the deviation bound (43), we find that

T2b ≤ c

√
V 2 log2(n)

n

∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
with probability at least 1 − n−10,

as claimed in equation (40b).

5.2.3. Proof of inequality (37a). Now we focus on the first term

T1 = sup
h∈F⋆(r)

∣∣∣∣∣
1

n

n∑

i=1

wiρτn(xi)h(xi)

∣∣∣∣∣.

Repeating the same strategy as in the proof of the bound (40b), we see that

T1 ≤
1

n

{
10

∞∑

j=1

min
{
r2,μj

∥∥f ⋆
∥∥2
H

}
·
(

n∑

i=1

wiρτn(xi)φj (xi)

)2}1/2

.(44)

Fix {xi}ni=1. We see that (
∑n

i=1 wiρτn(xi)φj (xi))
2 is a quadratic form of independent sub-

Gaussian random variables. Apply the Hanson–Wright inequality (e.g., Theorem 6.2.1 in the
book [21]) to obtain that with probability at least 1 − n−10,

(
n∑

i=1

wiρτn(xi)φj (xi)

)2

≤ c3σ
2

n∑

i=1

[
ρτn(xi)φj (xi)

]2
.(45)

It remains to control the term
∑n

i=1[ρτn(xi)φj (xi)]2. To this end, we invoke Bernstein’s in-
equality to arrive at

n∑

i=1

[
ρτn(xi)φj (xi)

]2 ≤ E

[
n∑

i=1

[
ρτn(xi)φj (xi)

]2
]

+ c4

√
α logn + c5β logn

with probability exceeding 1 − n−10. Here

α := E

n∑

i=1

Var
([

ρτn(xi)φj (xi)
]2)≤

(
nV 2)2,

β := sup
x

∣∣[ρτn(x)φj (x)
]2∣∣≤ τn

2 = nV 2,

are the variance and range statistics, respectively. This together with the upper bound
E[∑n

i=1[ρτn(xi)φj (xi)]2] ≤ nV 2 implies

n∑

i=1

[
ρτn(xi)φj (xi)

]2 ≤ c6nV 2 logn.(46)

Combine the inequalities (44), (45), and (46) to complete the proof of the inequality (37a).

6. Discussion. In this paper, we study RKHS-based nonparametric regression under co-
variate shift. In particular, we focus on two broad families of covariate shift problems: (1) the
uniformly B-bounded family, and (2) the χ2-bounded family. For the uniformly B-bounded
family, we prove that the unweighted KRR estimate—with properly chosen regularization
parameter—achieves optimal rate convergence for a large family of RKHSs with regular
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eigenvalues. In contrast, the naïve constrained kernel regression estimator is provably subop-
timal under covariate shift. In addition, for the χ2-bounded family, we propose a likelihood-
ratio-reweighted KRR with proper truncation that attains the minimax lower bound over this
larger family of covariate shift problems.

Our study is an initial step towards understanding the statistical nature of covariate shift.
Below we single out several interesting directions to pursue in the future. First, it is of great
importance to extend the study to other classes of regression functions, for example, high
dimensional linear regression, decision trees, etc. Second, while it is natural to measure dis-
crepancy between source-target pairs using likelihood ratio, this is certainly not the only
possibility. Various measures of discrepancy have been proposed in the literature, and it is in-
teresting to see what the corresponding optimal procedures are. Thirdly, our upper and lower
bounds match for regular kernels. It is standard in the kernel regression literature to make
an assumption regarding the decay of the kernel eigenvalue sequence [2, 23]. As highlighted
by the corollaries to our main upper bound, the assumption of a regular kernel is general
enough to capture the main examples of kernels used in practice. Additionally, we emphasize
that in this paper, we have adopted a worst-case perspective where we study the minimax
rate of estimation for a sequence of regular kernel eigenvalues, over all B-bounded covariate
shifts. A more instance-dependent perspective which studies these minimax rates for a fixed
B-bounded covariate shift pair is very interesting and left for future work. Lastly, on a tech-
nical end, it is also interesting to see whether one can remove the uniform boundedness of
the eigenfunctions in the unbounded likelihood ratio case, and retain the optimal rate of con-
vergence. In the current proof, we mainly use it to develop a localization bound (39a) which
guarantees that any function h ∈ H that is r-close to f ⋆ in ℓ2 sense (roughly) enjoys an ℓ∞
bound that also scales with r .
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1. Proof of Theorem 3.3. Let δn be the smallest positive solution to the inequality

c′σ2B d(δ)
n ≤ δ2, where c′ > 0 is some large constant. We decompose the proof into two

steps. First, we construct the lower bound instance, namely the source, target distributions,

and the corresponding orthonormal basis. Second, we apply the Fano method to prove the

lower bound.

Step 1: Constructing the lower bound instance.

Let Q be a uniform distribution on {±1}+∞. For the source distribution P , we set it as

follows: with probability 1/B, we sample x uniformly on {±1}+∞, and with probability

1− 1/B, we set x= 0. It can be verified that the pair (P,Q) has B-bounded likelihood ratio.

Corresponding to the target distribution Q, we take ϕj(x) = xj for every j ≥ 1. In other

words, we consider a linear kernel.

Step 2: Establishing the lower bound.

In order to apply Fano’s method, we first need to construct a packing set of the function

class BH(1). For a given radius r > 0, consider the r-localized ellipse

E (r) :=
{
θ |

∞∑

j=1

θ2j
min{r2, µj}

≤ 1
}
.

It is straightforward to check that for any θ ∈ E (r), the function f =
∑∞

j=1 θjϕj lies in

BH(1). This set E (r) admits a large packing set in the ℓ2-norm, as claimed in the following

lemma.

LEMMA 1.1. For any r ∈ (0, δn], there exists a set {θ1, θ2, . . . , θM} ⊆ E (r) with

logM = dn/64 such that

∥θj − θk∥22 ≥ r2

4 for any distinct pair of indices j ̸= k.

See Lemma 4 in the paper [3].

Having constructed the packing, we then need to control the pairwise KL divergence.

Fix an index j ∈ [M ]. Let P × Lj denote the joint distribution over the observed data

MSC2020 subject classifications: Primary 62C20; secondary 62G08.

Keywords and phrases: covariate shift, nonparametric regression, reproducing kernel Hilbert spaces, kernel

ridge regression, transfer learning.
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{(xi, yi)}1≤i≤n when the true function arises from θj . Then for any pair of distinct indices

j ̸= k, we have the upper bound

KL(P ×Lj∥P ×Lk) =
n

2σ2
·EX∼P

[(
(θj − θk)⊤ϕ(X)

)2] (i)
=

n

2σ2B
∥θj − θk∥22

(ii)

≤ 2nr2

σ2B
,

where step (i) follows from the definition of P ; and step (ii) follows from applying the triangle

inequality, and the fact that ∥θ∥2 ≤ r for all θ ∈ E (r).

Consequently, we arrive at the lower bound inf
f̂
supf⋆∈F E[∥f̂ − f⋆∥2Q] ≥ r2

8 , valid for

any sample size satisfying the condition

2nr2

σ2B
+ log 2≤ 1

2
logM =

dn
128

.(1)

By the definition of a regular kernel, we have dn ≥ c nδ2n
Bσ2 for a universal constant c. Fur-

thermore, since δn satisfies the lower bound δ2n ≥ c′ σ
2B
n , the condition (1) is met by setting

r2 = c1δ
2
n for some sufficiently small constant c1 > 0.

2. Proof of Theorem 3.4. Let the sample size n≥ 1 and likelihood ratio bound B ≥ 1
be given. Our failure instance relies on a function class Fn, together with a pair of distri-

butions (P,Q). The function class Fn is the unit ball of a RKHS with finite-rank kernel,

over the hypercube {−1,+1}n. The kernel is given by K (x, z) :=
∑n

j=1 µjϕj(x)ϕj(z). The

eigenfunctions and eigenvalues are

ϕj(x) = xj , and µj =
1

j2
, for j = 1, . . . , n.

To be clear, the function class is given by

Fn := {f :=

n∑

j=1

θjϕj |
n∑

j=1

θ2

j

µj
≤ 1}.

The target distribution, Q, is the uniform distribution on {−1,+1}n. The source distribution

is a product distribution, P =⊗n
j=1Pj . We take Pj to be uniform on {+1,−1}, when j > 1.

On the other hand, the first coordinate follows the distribution

P1 :=
(
1− 1

B

)
δ0 +

1

B
Unif({−1,+1}).

It is immediate that (P,Q) have B-bounded likelihood ratio.

Given this set-up, our first step is to reduce the lower bound to the separation of a single

coordinate of the parameter associated with the empirical risk minimizer and a single coor-

dinate of the parameter associated with a hard instance in the function class of interest Fn.

We introduce a one-dimensional minimization problem that governs this separation problem

and allows us to establish our result.

2.1. Reduction to a one dimensional separation problem. To establish our lower bound

it suffices to consider the following “hard” function

f⋆
hard(x) = x1 =

n∑

j=1

(θ⋆hard)jϕj(x), where θ⋆hard = (1,0, . . . ,0) ∈R
n.
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Since ϕj(x) = xj and µj = j−2, it follows that f⋆
hard ∈ Fn. We can write f̂erm(x) =∑n

j=1(θ̂erm)jxj , where we defined

(2) θ̂erm := argmin
{ n∑

i=1

( n∑

j=1

θjxij − yi
)2 |

n∑

j=1

θ2

j

µj
≤ 1

}
.

Putting these pieces together, we see that

(3)

sup
f⋆∈Fn

E

[
∥f̂erm−f⋆∥2Q

]
≥ E

[
∥f̂erm−f⋆

hard∥2Q
]
(i)
= E

[
∥θ̂erm−θ⋆hard∥22

] (ii)

≥ E

[(
(θ̂erm)1−θ⋆1

)2]
.

Above, the relation (i) is a consequence of Parseval’s theorem, along with the orthonormality

of {ϕj}nj=1 in L2(Q). Inequality (ii) follows by dropping terms corresponding to indices

indices j > 1. Therefore, in view of display (3), it suffices to show that:

(4) P

{(
(θ̂erm)1 − 1

)2 ≥ c3
B3

n2

}
≥ 1

2
.

2.2. Proof of one-dimensional separation bound (4). We begin with a proof outline.

Proof outline

To establish (4), we can assume (θ̂erm)1 ∈ [0,1]; otherwise, the lower bound follows triv-

ially, provided c2 is sufficiently small, in particular, c2 ≤ 3

√
1/c3. We introduce a bit of nota-

tion:

Σ̂P :=
1

n

n∑

i=1

xix
⊤
i and v :=

1

n

n∑

i=1

wixi.

Thus, we can further restrict the empirical risk minimization problem (2) to

θ̃ := argmin
{ n∑

i=1

( n∑

j=1

θjxij − yi
)2 |

n∑

j=1

θ2j
µj

≤ 1, θ1 ∈ [0,1]
}

= argmin

{
(θ− θ⋆)T Σ̂P (θ− θ⋆)− 2vT (θ− θ⋆) |

n∑

j=1

θ2j
µj

≤ 1, θ1 ∈ [0,1]

}
.(5)

Indeed, in order to prove inequality (4), it suffices to show that

(6) P

{(
θ̃1 − 1

)2 ≥ c3
B3

n2

}
≥ 1

2
.

Let us define an auxiliary function g : [0,1]→R, given by

(7) g(t) := inf
{
(θ− θ⋆)T Σ̂P (θ− θ⋆)− 2vT (θ− θ⋆) |

n∑

j=1

θ2j
µj

≤ 1, θ1 = t
}
.

By definition (5), the choice θ̃ minimizes this objective, and therefore inft∈[0,1] g(t) = g(θ̃1).
The next two lemmas concern the minimum value and minimizer of g. Lemma 2.1, which

we prove in section 2.4.1, bounds the minimal value from above. Lemma 2.2, demonstrates

that there is an interval of length order
√

B3/n2 on which the function g is bounded away

from the minimal value. We prove this result in Section 2.4.2.

LEMMA 2.1 (Minimal value of empirical objective). There is a constant c∗ > 0 such that

g(θ̃1)≤−c∗
√
B

n

holds with probability at least 3/4.



4

g(t)

−c∗
√
B
n

t

θ̃1 θ⋆1 −

√

c3B3

n θ⋆1

FIG 1. Pictorial representation of lower bound argument, separating the first coordinate of empirical risk min-

imizer, θ̃1, from the true population minimizer θ⋆1 . Lemma 2.1 establishes the upper bound, depicted in purple

above, on the minimal value of g. Lemma 2.2 establishes an interval, shown between the red dashed line and θ⋆1
above, which excludes θ̃1. This allows us to ensure that θ⋆1 and θ̃1 are sufficiently separated.

LEMMA 2.2 (Separation from θ⋆1). There exists a constant c3 > 0 such that

inf
t∈[0,1]

(1−t)2≤c3B3/n2

g(t)>−c∗
√
B

n
.(8)

where probability at least 3/4.

Note that the constant c∗ used in Lemmas 2.1 and 2.2 is the same. Thus—after union

bounding over the two error events—with probability at least 1/2,

g(θ̃1)< inf
t∈[0,1]

(1−t)2≤c3B3/n2

g(t).

Recalling that θ̃1 ∈ [0,1], we conclude on this event that (1 − θ̃1)
2 ≥ c3

B3

n2 , which fur-

nishes (6), and thereby establishes the required result. To complete the proof, it then remains

to establish the auxiliary lemmas stated above. Before doing so, we record a useful lemma,

which will be used multiple times later.

2.3. A useful lemma.

LEMMA 2.3. For any quantity α ∈ ( B
4n2 ,

B
4 ), with probability at least 1 − c1 exp

(
−

c2
B1/2

α1/2

)
, one has

c
B1/2

α1/2

1

n
≤

n∑

j=2

(vj)
2

1 + α
Bµj

≤C
B1/2

α1/2

1

n
.

Here c1, c2,C, c > 0 are absolute constants.
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PROOF. For each j ≥ 1, define ηj :=
(
1 + α

Bµj

)−1
. We focus on controlling the term

n∑

j=2

ηj
[
(
√
nvj)

2 − 1
]
.

Recall from the definition of v that vj =
1
n

∑n
i=1wixij . Under the construction of the lower

bound instance, we have
√
nvj

i.i.d.∼ N (0,1). Therefore
√
nvj)

2 − 1 is a mean-zero sub-

exponential random variable. This allows us to invoke Bernstein’s inequality to obtain

P



∣∣∣∣∣∣

n∑

j=2

ηj
[
(
√
nvj)

2 − 1
]
∣∣∣∣∣∣
≥ t


≤ 2exp

{
−cmin

(
t2∑
j≥2 η

2
j

,
t

maxj ηj

)}
,

where c > 0 is some universal constant.

We claim that there exist three constants C1,C2,C3 > 0 such that

max
j=2,...,n

ηj ≤ 1;(9a)

n∑

j=2

η2j ≤C1
B1/2

α1/2
;(9b)

C2
B1/2

α1/2
≤

n∑

j=2

ηj ≤C3
B1/2

α1/2
.(9c)

As a result, we can t= c0
B1/2

α1/2 with c0 sufficiently small to arrive at the desired conclusion.

We are left with proving the claimed relations (9). The first relation (9a) is trivial. We

provide the proof of the third inequalities (9c); the proof of the middle one (cf. relation (9b))

follows by a similar argument. Since α ∈ ( B
4n2 ,

B
4 ), we can decompose the sum into

n∑

j=2

ηj =

⌊
√

B/α⌋∑

j=2

1

1 + α
Bµj

+

n∑

j=⌊
√

B/α⌋+1

1

1 + α
Bµj

.

Recall that µj = j−2. We thus have 1≥ α
Bµj

for j ≤ ⌊
√

B/α⌋ and 1≤ α
Bµj

for j ≥ ⌊
√

B/α⌋.

These allow us to upper bound
∑n

j=2 ηj as

n∑

j=2

ηj ≤ ⌊
√

B/α⌋+ B

α

n∑

j=⌊
√

B/α⌋+1

1

j2
≤C3

B1/2

α1/2
.

Similarly, we have the lower bound

n∑

j=2

ηj ≥
⌊
√

B/α⌋∑

j=2

1

1 + α
Bµj

≥ 1

2
⌊
√

B/α⌋ ≥C2
B1/2

α1/2
.

This finishes the proof.

2.4. Proof of auxiliary lemmas. In order to facilitate the proofs of these lemmas, it is

useful to decompose θ = (θ1, θR) ∈R×R
n−1. Additionally, we consider the constraint set

C(t) :=
{
θR ∈R

n−1 |
n∑

j=2

θ2j
µj

≤ 1− t2
}
, where t ∈ [0,1].
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This set plays a key role. In view of definition (7), we can write

(10) g(t) = inf
θR∈C(t)

{[
t− 1
θR

]⊤
Σ̂P

[
t− 1
θR

]
− 2

[
t− 1
θR

]⊤
v

}
,

where above we have used θ⋆ = (1,0, . . . ,0). Finally, we will use the diagonal matrix of

kernel eigenvalues M := diag(µ1, µ2, . . . , µn), repeatedly.

2.4.1. Proof of Lemma 2.1. We show that with probability at least 3/4,

(11) g(ω)≤−c∗
√
B

n
, where ω :=

√
1− B3/2

n
.

When n2 ≥B3, we have ω ∈ [0,1]. Since inft∈[0,1] g(t)≤ g(ω), the display (11) implies the

result.

Proof of bound (11): From the proof of Lemma 5.1, if we set λ := C logn
n for some con-

stant C > 0, then we have

1
2(ΣP + λM−1)⪯ Σ̂P + λM−1 ⪯ 3

2(ΣP + λM−1),(12)

with probability at least 1 − 1
n . Consequently, for any vector θ obeying θ⊤M−1θ ≤ 1, we

have the upper bound

(θ− θ⋆)⊤ Σ̂P (θ− θ⋆) = (θ− θ⋆)⊤
(
Σ̂P + λM−1

)
(θ− θ⋆)− λ (θ− θ⋆)⊤M

−1 (θ− θ⋆)

≤ 3

2
(θ− θ⋆)⊤ (ΣP + λM−1) (θ− θ⋆)− λ (θ− θ⋆)⊤M

−1 (θ− θ⋆)

=
3

2
(θ− θ⋆)⊤ΣP (θ− θ⋆) +

λ

2
(θ− θ⋆)⊤M

−1 (θ− θ⋆)

≤ 3

2
(θ− θ⋆)⊤ΣP (θ− θ⋆) + 2λ,

where the final inequality holds since (θ− θ⋆)⊤M
−1 (θ− θ⋆)≤ 4. Applying this result with

the vector θ = (ω, θR)
⊤ yields

g(ω)≤min
θR∈C

{
3

2

[
ω− 1
θR

]⊤
ΣP

[
ω− 1
θR

]
− 2

[
ω− 1
θR

]⊤
v+ 2λ

}

= T1(ω) + T2(ω) + 2λ+min
θR∈C

T3(θR).(13)

Above, we have defined

T1(ω) :=
3

2

(ω− 1)2

B
, T2(ω) :=−2v1(ω− 1), and T3(θR) :=

3

2
∥θR∥22 − 2v⊤R θR,(14)

and we have used the decomposition v = (v1, vR)
⊤. We now bound each of these three terms

in turn.

Controlling the term T1(ω):

Recall ω ∈ [0,1] satisfies the equality 1− ω2 = B3/2

n . Consequently, we have

T1(ω) =
3

2

(1− ω)2

B
≤ 3

2

(1− ω2)2

B
=

3

2

B2

n2
.(15)

Controlling the term T2(ω): For the second term, by definition of ω, we have

T2(ω) = 2v1(1− ω)≤ 2|v1|(1− ω)≤ 2|v1|(1− ω2) = 2|v1| ·
B3/2

n
.(16)

We have the following lemma to control the size of |v1|.
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LEMMA 2.4. The following holds true with probability at least 0.99
∣∣∣∣∣
1

n

n∑

i=1

wixi1

∣∣∣∣∣≤
10√
nB

.

PROOF. In view of the construction of the lower bound instance, we can calculate

E



(
1

n

n∑

i=1

wixi1

)2

=

1

n2

n∑

i=1

E
[
w2
i x

2
i1

]
=

1

nB
.

The claim then follows from Chebyshev’s inequality.

Lemma 2.4 demonstrates that |v1| ≤ 10√
nB

, with probability at least 99/100. Therefore, on

this event, the bound (16) guarantees

(17) T2(ω)≤ 20
B

n3/2
.

Controlling the term T3(θr):
Our final step is to upper bound the constrained minimum min

θR∈C
T3(θR). Since this mini-

mization problem is strictly feasible, Lagrange duality guarantees that

min
θR∈C

T3(θR) =min
θR

max
ξ≥0

{
3

2
∥θR∥22 − 2v⊤R θR + ξ(θ⊤RM

−1
R

θR − B3/2

n
)

}

=max
ξ≥0

min
θR

{
3

2
∥θR∥22 − 2v⊤R θR + ξ(θ⊤RM

−1
R

θR − B3/2

n
)

}
.

The inner minimum is achieved at θR =
[
3
2I + ξM−1

R

]−1
vR, so that we have established the

equality

min
θR∈C

T3(θR) =max
ξ≥0

{
−ξB3/2

n − v⊤R
[
3
2I + ξM−1

R

]−1
vR

}
= max

ξ≥0



−ξ

B3/2

n
−

n∑

j=2

(vj)
2

3
2 +

ξ
µj



 .

It remains to analyze the maximum over the dual variable ξ, and we split the analysis into

two cases.

• Case 1: First, suppose that the maximum is achieved at some ξ⋆ ≥ 1
B . In this case, we have

max
ξ≥0



−ξB3/2

n −
n∑

j=2

(vj)
2

3
2 +

ξ
µj



≤−ξ⋆

B3/2

n
≤−B1/2

n
.

• Case 2: Otherwise, we may assume that the maximum achieved at some ξ⋆ ∈ [0, 1
B ], in

which case we have

max
ξ≥0



−ξB3/2

n −
n∑

j=2

(vj)
2

3
2 +

ξ
µj



≤−

n∑

j=2

(vj)
2

3
2 +

ξ⋆

µj

≤−
n∑

j=2

(vj)
2

3
2 +

1
Bµj

≤−c
B1/2

n
,

where c > 0 is a constant. Here in view of Lemma 2.3, the last inequality holds with

probability at least 0.9 as long as B is sufficiently large.
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Combining the two cases, we arrive at the conclusion that as long as B is sufficiently large,

with probability at least 0.9,

(18) min
θR∈C

T3(θR)≤−c1
B1/2

n

for some constant c1 > 0.

Completing the proof: We can now combine bounds (15), (17), and (18) on the terms

T1, T2, T3, respectively. Note that when n ≥ 7B3/2 ≥ 7, all three events and the upper

bound (13) hold simultaneously, with probability 1− ( 1n + 1
100 +

1
10)≥ 3/4. Therefore, we

obtain

g(ω)≤ 3

2

B2

n2
+ 20

B

n3/2
− c1

B1/2

n
+C

logn

n

≤−c1
2

B1/2

n
.

The final inequality above holds, since B ≥ c1(logn)
2 and n≥ 7B3/2, for sufficiently large

c1 > 0.

2.4.2. Proof of Lemma 2.2. We will prove the slightly stronger claim that with probabil-

ity at least 3/4, we have

(19) inf
t∈[0,1]

1−t2≤βB3/2/n

g(t)>−c∗
√
B

n

To see that this proves the claim, note that supt∈[0,1]
(1−t2)2

(1−t)2 = 4 Therefore, if (1 − t)2 ≤
β2

4
B3

n2 , then (1− t2)2 ≤ β2B3

n2 . Hence, (19) proves the claim as soon as c3 = β2/4.

Proof of bound (19): On the event (12), if θ = (θ1, θR)
⊤ obeys θ⊤M−1θ ≤ 1, then we

have the lower bound

(θ− θ⋆)⊤ Σ̂P (θ− θ⋆) = (θ− θ⋆)⊤
(
Σ̂P + λM−1

)
(θ− θ⋆)− λ (θ− θ⋆)⊤M

−1 (θ− θ⋆)

≥ 1

2
(θ− θ⋆)⊤ (ΣP + λM−1) (θ− θ⋆)− λ (θ− θ⋆)⊤M

−1 (θ− θ⋆)

=
1

2
(θ− θ⋆)⊤ΣP (θ− θ⋆)− λ

2
(θ− θ⋆)⊤M

−1 (θ− θ⋆)

≥ 1

2
(θ− θ⋆)⊤ΣP (θ− θ⋆)− 2λ,

valid when λ=C logn
n for some constant C > 0. Consequently, we have

g(θ1)≥ min
θR∈C(θ1)

{
1

2
(θ− θ⋆)⊤ΣP (θ− θ⋆)− 2 (θ− θ⋆)⊤ v− 2λ

}

= min
θR∈C(θ1)

{
1

2

(θ1 − 1)2

B
− 2v1(θ1 − 1) +

1

2
∥θR∥22 − 2v⊤R θR − 2λ

}

≥−T2(θ1)− 2λ+ min
θR∈C(θ1)

{1
2
∥θR∥22 − 2v⊤R θR}.(20)

where the last line identifies −2v1(θ1 − 1) with T2(θ1) (cf. definition (14)).

We separate the proof into two cases—mainly to get around the duality issue.
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Case 1: θ1 = 1. In this case, we have

g(θ1)≥−2λ=−2C logn

n
.(21)

Case 2: θ1 ∈ [0,1). We lower bound the terms in equation (20) in turn.

• Lower bounding T2(θ1). For any 0< 1− θ21 ≤ βB3/2

n , the following relation

T2(θ1)≥−2|v1| · |θ1 − 1|
(i)

≥ −2|v1| ·
(
1− θ21

) (ii)

≥ −20β
B

n3/2

holds with probability at least 0.99. Here step (i) uses the fact that

|θ1 − 1|= |1−
√

1− (1− θ21)| ≤ 1− θ21 for all θ1 ∈ [0,1],

and step (ii) relies on Lemma 2.4 and the constraint 1− θ21 ≤ βB3/2

n .

• Lower bounding minθR∈C′(θ1){1
2∥θR∥22 − 2v⊤

R
θR}. When θ1 ∈ [0,1), the constraint set

C′(θ1) has non-empty interior, and the minimization over θR is strictly feasible. In this

case, strict duality holds so that

min
θR∈C′(θ1)

{
1
2∥θR∥22 − 2v⊤R θR

}
=max

ξ≥0



−ξ(1− θ21)−

n∑

j=2

(vj)
2

1
2 +

ξ
µj





≥−
[
n(1− θ21)

]−2/3
(1− θ21)−

n∑

j=2

(vj)
2

1
2 +

(n(1−θ2

1
))−2/3

µj

=− (1−θ2

1
)1/3

n2/3 −
n∑

j=2

(vj)2

1
2+

(n(1−θ2

1
))−2/3

µj

.

Here the second line arises from a particular choice of ξ, namely ξ =
(
n(1− θ21)

)−2/3
.

Since 1− θ21 ≤ βB3/2

n , we further have

−
(
1− θ21

)1/3

n2/3
−

n∑

j=2

(vj)
2

1
2 +

(n(1−θ2

1
))−2/3

µj

≥−β1/3B1/2

n
−

n∑

j=2

(vj)
2

1
2 +

(βB3/2)−2/3

µj

=−β1/3B1/2

n
−

n∑

j=2

(vj)
2

1
2 +

1
β2/3Bµj

≥−C̃
β1/3B1/2

n
,

where C̃ > 0 is a constant. Here, since B is sufficiently large, Lemma 2.3 guarantees that

the last inequality holds with probability at least 0.9.

Combining the two cases above, we arrive at the conclusion that for any 1− θ21 ≤ βB3/2

n ,

g(θ1)≥−20β
B

n3/2
− 2C

logn

n
− C̃

β1/3B1/2

n
.

Under the assumptions that B ≥ C1(logn)
2 and n ≥ C2B

3/2 for some sufficiently large

constants C1,C2 > 0, we can choose β sufficiently small so as to make sure that

g(θ1)≥−c∗
B1/2

n
for all 1− θ21 ≤ β

B3/2

n
.
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3. Proofs of the bounds (39). By definition, any function h ∈ F⋆ obeys ∥h∥H ≤
3∥f⋆∥H. In terms of the expansion h=

∑∞
j=1 θjϕj , this constraint is equivalent to the bound∑∞

j=1 θ
2
j/µj ≤ 9∥f⋆∥2H. In addition, the constraint ∥h∥Q ≤ r implies that

∑∞
j=1 θ

2
j ≤ r2. In

conjunction, these two inequalities imply that

∞∑

j=1

θ2j
min{r2, µj∥f⋆∥2H}

≤ 10,

as claimed in inequality (39b).

We now use this inequality to establish the bound (39a). For any x ∈ X , we have

|h(x)|=
∣∣∣

∞∑

j=1

θjϕj(x)
∣∣∣=
∣∣∣

∞∑

j=1

θj√
min{r2, µj∥f⋆∥2H}

·
√

min{r2, µj∥f⋆∥2H}ϕj(x)
∣∣∣

(i)

≤

√√√√
∞∑

j=1

θ2j
min{r2, µj∥f⋆∥2H}

·

√√√√
∞∑

j=1

min{r2, µj∥f⋆∥2H}ϕ2
j (x)

(ii)

≤

√√√√10

∞∑

j=1

min{r2, µj∥f⋆∥2H}.

Here step (i) uses the Cauchy–Schwarz inequality, whereas step (ii) follows from the previous

claim (39b) and the assumption that |ϕj(x)| ≤ 1 for all j ≥ 1.

4. Performance guarantees for LR-reweighted KRR. In this section, we present the

performance guarantee for the LR-reweighted KRR estimate with truncation for all ranges of

σ2.

Similar to the large noise regime, we define

Mnew(δ) := c0

√
σ2V 2 log3(n)

n Ψ(δ,µ)

(√
Ψ(δ,µ)
σ2 + 1

)
.(22)

Our theorem applies to any solution δnewn > 0 to the inequality Mnew(δ)≤ δ2/2.

THEOREM 4.1. Consider a kernel with sup-norm bounded eigenfunctions (19), and a

source-target pair with EP [ρ
2(X)]≤ V 2. Then the estimate f̂ rw

λ with truncation τn =
√
nV 2

and regularization λ∥f⋆∥2H = δ2n/3 satisfies the bound

∥f̂ rw
λ − f⋆∥2Q ≤ δ2n(23)

with probability at least 1− c n−10.

PROOF. Inspecting the proof of Theorem 4.1 (in particular, equation (38)), one has with

high probability that

sup
g∈G(δn)

{
∥g− f⋆∥2Q +

1

n

n∑

i=1

ρτn(xi)
[(
f⋆(xi)− yi

)2 −
(
g(xi)− yi

)2]}≤Mnew(δn).

Repeating the analysis in Section 5.2 with δλ = δn yields the desired claim.



COVARIATE SHIFT 11

5. Expectation bounds for KRR estimates. In this section, we derive expectation

bounds as counterparts to our previous high probability upper bounds on the KRR estimates.

In Section 5.1, we present an expectation bound for instances with bounded likelihood ra-

tios, essentially as a consequence of our previous high probability statement, given in Theo-

rem 3.1. Similarly, in Section 5.2, we present an expectation bound for instances which have

possibly unbounded likelihood ratios, but for which the second moment of the likelihood

ratios is bounded. Again, this can be seen as an extension of our previous high-probability

statement on the truncated, reweighted KRR estimator, as stated in Theorem 4.1.

5.1. Bounded likelihood ratio.

THEOREM 5.1. Consider a covariate-shifted regression problem with likelihood ratio

that is B-bounded (3) over a Hilbert space with a κ-uniformly bounded kernel (9). There are

universal constants c1, c2 > 0 such that if λ ≥ c1
κ2 logn

n , the KRR estimate f̂λ satisfies the

bound

E
[
∥f̂λ − f⋆∥2Q

]
≤ c2

{
λB∥f⋆∥2H +

σ2B

n

∞∑

j=1

µj

µj + λB
+

σ2

n

}
.(24)

Inspecting the proof, one may take c1 = 32, c2 =
519
256 . The proof of this result is presented in

Section 5.1.1.

An immediate consequence is the following result for regular kernels. Note that it matches

our lower bound (see Theorem 3.3), apart from logarithmic factors.

COROLLARY 5.2. Suppose σ2 ≥ κ2 and ∥f⋆∥H = 1. For any B ≥ 1 and any pair (P,Q)
with B-bounded likelihood ratio (3), any orthonormal basis {ϕj}j≥1 of L2(Q), and any

regular sequence of kernel eigenvalues {µj}j≥1, there exist a universal constant C > 0 such

that

E
[
∥f̂λ − f⋆∥2Q

]
≤C inf

δ>0

{
δ2 + σ2Bd(δ)

logn

n

}
,(25)

where above λ= δ2n where δ2n = cσ
2Bd(δn) logn

n for a universal constant c > 0.

PROOF. Following the proof of Corollary 3.2, we obtain from the KRR risk bound of

Theorem 5.1,

(26) E
[
∥f̂λ − f⋆∥2Q

]]
≤C1

{
δ2 + σ2Bd(δ)

logn

n

}
, where δ2 = λB,

for any δ2 ≥ c1Bκ2 lognn . Adjusting constants so that c ≥ c1, our choice of δ2n is valid since

σ2 ≥ κ2 and d(δn) ≥ 1. Moreover, since δ2 is an increasing function of δ, whereas d(δ) is

nonincreasing, under the choice of δ2n = cσ
2Bd(δn) logn

n , we have

(27)
{
δ2n + σ2Bd(δn)

logn

n

}
≤C2 inf

δ>0

{
δ2 + σ2Bd(δ)

logn

n

}
,

for a universal constant C2 > 0. Note that this inequality completes the proof of the result,

with C =C1C2.
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5.1.1. Proof of Theorem 5.1. Using Parseval’s theorem and the optimality conditions for

the KRR problem as given in equation (29), we have E[∥f̂λ − f⋆∥2Q]≤ E[T1] +E[T2] where

T1 := ∥λ(Σ̂P + λM−1)−1
M

−1θ⋆∥22, and T2 := ∥(Σ̂P + λM−1)−1
( 1
n

n∑

i=1

wiϕ(xi)
)
∥22.

Recall the event

E(λ) :=
{
M

1/2
Σ̂PM

1/2 + λI ⪰ 1

2

(
M

1/2
ΣPM

1/2 + λI
)}

,

as defined in equation (27). We use this event to bound the two terms. Bound for T1 Inspect-

ing the proof of Theorem 3.1 (specifically, see the proof of bound (30)(a)), it follows that

E[T11E(λ)] ≤ 2λB∥f⋆∥2H. On the other hand, from inequality (ii) of the proof of (30)(a), it

also holds that

E[T11E(λ)c ]≤ ∥f⋆∥2H|||M |||2P(E(λ)c)≤ ∥f⋆∥Hκ2P(E(λ)c).

The final inequality holds since |||M |||2 ≤ trace(M) = EQ[
∑

j µjϕ
2
j (x)] ≤ κ2. Now, note

that whenever nλ≥ 32κ2 logn, by Lemma 5.1 we have that

E[T11E(λ)c ]≤ ∥f⋆∥2HP(E(λ)c)

≤ 28λ∥f⋆∥2H
[(κ2

λ

)2
exp

(
− nλ

16κ2

)]

≤ 7

256
λ∥f⋆∥2H.

Putting the pieces together, we obtain

(28) E[T1]≤
519

256
λ∥f⋆∥2H.

Bound for T2 By considering the expectation over wi conditional on the covariates and

following algebraic manipulations similar to the proof of bound (30)(b), we have

E[T2]≤ E[T̃2], where T̃2 := trace
(σ2

n
(Σ̂P + λM−1)−1

)
.

Moreover, inspecting the proof of bound (30)(b), we also have

E[T̃21E(λ)]≤ 2
σ2B

n

∞∑

j=1

µj

µj + λB
.

On the other hand, by bounding (Σ̂P + λM−1)−1 ⪯ λ−1
M ,

E[T̃21E(λ)c ]≤
σ2

n

κ2

λ
P(E(λ)c)≤ 7

256

σ2

n
.

The final inequality above is established in the same manner as in the proof of the bound for

T1 above, when nλ≥ 32κ2 logn. Thus, combining the two bounds,

E[T2]≤ 2
σ2B

n

∞∑

j=1

µj

µj + λB
+

7

256

σ2

n
.
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5.2. Unbounded likelihood ratio.

THEOREM 5.3. Suppose σ2 ≥ κ2 and ∥f⋆∥H = 1. Consider a kernel with sup-norm

bounded eigenfunctions (19), and a source-target pair with EP [ρ
2(X)] ≤ V 2. Then, for

any orthonormal basis {ϕj}j≥1 of L2(Q) and any regular sequence of kernel eigenvalues

{µj}j≥1, there exists a universal constant C > 0 such that,

E

[
∥f̂ rw

λ − f⋆∥2Q
]
≤C inf

δ>0

{
δ2 + V 2d(δ)

log3 n

n

}
.(29)

Above, 3λ = δ2n where δ2n satisfies the equation δ2 = cσ
2V 2 log3 n

n for a universal constant

c > 0.

Before giving the proof, we emphasize that—apart from logarithmic factors—this bound

is minimax optimal.

PROOF. By Theorem 4.1, there is an event E which has probability at least 1−cn−10 such

that the truncated, reweighted estimator f̂ rw
λ satisfies

∥f̂ rw
λ − f⋆∥2Q ≤ c1δ

2,

provided we select λ≍ δ2 ≍ σ2V 2 log3(n)d(δ)
n . Note that under this choice of δ2, we have

δ2 ≍ inf
δ>0

{
δ2 +

σ2V 2 log3(n)d(δ)

n

}
.

Consequently, there is a constant c2 > 0 such that

(30) E

[
∥f̂ rw

λ − f⋆∥2Q
]
≤ c2 inf

δ>0

{
δ2 +

σ2V 2 log3(n)d(δ)

n

}
+E

[
∥f̂ rw

λ − f⋆∥2∞1Ec

]
.

By Cauchy-Schwarz,

∥f̂ rw
λ − f⋆∥2∞ ≤ κ2∥f̂ rw

λ − f⋆∥2H ≤ 2κ2(1 + ∥f̂ rw
λ ∥2H).

Applying the optimality condition of the reweighted estimator f̂ rw
λ , we have

λ∥f̂ rw
λ ∥2H ≤ λ+

√
nV 2

1

n

n∑

i=1

w2
i .

Therefore, combining the previous two displays,

∥f̂ rw
λ − f⋆∥2∞ ≤ 2κ2

(
2 +

√
nV 2

λ

1

n

n∑

i=1

w2
i

)
.

It then follows by Cauchy-Schwarz and the sub-Gaussianity of wi, that for some constant

c3 > 0,

E

[
∥f̂ rw

λ − f⋆∥2∞1Ec

]
≤ c3

( κ2

n10
+

σ2V 2

λn4
κ2
)

(i)

≤ c3
σ2V 2

n

( 1

n9
+

κ2

λ

1

n3

)

(ii)

≤ c3
σ2V 2

n

( 1

n9
+

c4
n2

)

(iii)

≤ c5
σ2V 2

n
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Above, inequality (i) uses σ2 ≥ κ2 and V 2 ≥ 1. Inequality (ii) uses the fact that λ ≍ δ2 ≍
σ2V 2 log3(n)d(δ)

n ≳ κ2

n . Finally, inequality (iii) follows by defining c5 ≥ c3(1+ c4). This bound

furnishes the result, since by applying it to the inequality (30), we obtain the result with

C = c2 + c5.

6. Performance of unweighted KRR with unbounded likelihood ratios. In this sec-

tion, we present the performance guarantee of the unweighted KRR estimator when the like-

lihood ratios are unbounded.

THEOREM 6.1. Consider a covariate-shifted regression problem with likelihood ratios

obeying EP [ρ
2(X)]≤ V 2. Then for any λ≥ 10κ2/n, the KRR estimate f̂λ satisfies the bound

∥f̂λ − f⋆∥2Q ≤ 2
√
λV 2κ2∥f⋆∥2H + 40

σ2 logn

n
· κ

2

λ
(31)

with probability at least 1− 28 κ2

λ e−
nλ

16κ2 − 1
n10 .

Simple algebra shows that the unweighted KRR estimator is still consistent for estima-

tion under covariate shift, with a rate of (σ
2V 2

n )1/3 (ignoring κ2 and log factors). However,

unfortunately, this is far from optimal.

6.1. Proof of Theorem 6.1. In view of the proof of Theorem 3.1, we know that

∥f̂λ − f⋆∥2Q ≤ 4λ∥f⋆∥2H|||M1/2(M1/2
ΣPM

1/2 + λI)−1
M

1/2|||2

+ 40
σ2 logn

n
trace

(
M

1/2(M1/2
ΣPM

1/2 + λI)−1
M

1/2
)

(32)

holds with probability at least 1− 28 κ2

λ e−
nλ

16κ2 − 1
n10 . The proof is finished with the help of

the following two bounds:

|||M1/2(M1/2
ΣPM

1/2 + λI)−1
M

1/2|||2 ≤
1

2

√
V 2κ2

λ
;(33a)

trace
(
M

1/2(M1/2
ΣPM

1/2 + λI)−1
M

1/2
)
≤ κ2

λ
.(33b)

Proof of the bound (33b): Note that M1/2(M1/2
ΣPM

1/2 + λI)−1
M

1/2 ⪯ λ−1
M .

We therefore have

trace
(
M

1/2(M1/2
ΣPM

1/2 + λI)−1
M

1/2
)
≤ trace(λ−1

M)≤ κ2

λ
,

where the last relation uses the fact that trace(M)≤ κ2.

Proof of the bound (33a): We first make the observation that the bound (33a) is equivalent

to

ΣP + λM−1 ⪰ 2

√
λ

V 2κ2
I.(34)

Therefore from now on, we focus on establishing the bound (34). Take an arbitrary vector θ
with ∥θ∥2 = 1. We have

1 = ∥θ∥22
(i)
= EQ[(θ

⊤ϕ(X))2]
(ii)
= EP [ρ(X) · (θ⊤ϕ(X))2]

(iii)

≤
√
EP [ρ2(X)] ·

√
EP [(θ⊤ϕ(X))4]

(iv)
=

√
V 2 ·

√
EP [(θ⊤ϕ(X))4].
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Here, the identity (i) follows from the fact that EQ[ϕ(X)ϕ(X)⊤] = I , the relation (ii)
changes the measure from Q to P , the inequality (iii) is due to Cauchy-Schwarz, and the

equality (iv) uses the definition of V 2. Apply the Cauchy-Schwarz inequality again to obtain

(θ⊤ϕ(X))2 ≤ ∥M−1/2θ∥22 · ∥M1/2ϕ(X)∥22 ≤ κ2∥M−1/2θ∥22,

where the second inequality relies on the fact that supx ∥M1/2ϕ(x)∥22 ≤ κ2. Take the above

inequalities together to yield

EP [(θ
⊤ϕ(X))2]≥ 1

V 2κ2 · (θ⊤M−1θ)
for any θ with ∥θ∥2 = 1.

As a result, one has

θ⊤(ΣP + λM−1)θ ≥ 1

V 2κ2 · (θ⊤M−1θ)
+ λθ⊤M−1θ ≥ 2

√
λ

V 2κ2
.

Since this inequality holds for any unit-norm θ, we establish the claim (34).

7. Auxiliary lemmas. The following lemma provides concentration inequalities for the

sum of independent self-adjoint operators, which appeared in the work [2].

LEMMA 7.1. Let Z1,Z2, . . . ,Zn be i.i.d. self-adjoint operators on a separable Hilbert

space. Assume that E[Z1] = 0, and |||Z1|||2 ≤ L for some L > 0. Let V be a positive trace-

class operator such that E[Z2
1 ]⪯ V , and |||E[Z2

1 ]|||2 ≤R. Then one has

P

(
||| 1
n

n∑

i=1

Zi|||2 ≥ t
)
≤ 28trace(V )

R
· exp

(
− nt2/2

R+Lt/3

)
, for all t≥

√
R/n+L/(3n).

Next, we turn attention to bounding the maxima of empirical processes. Let X1,X2, . . . ,Xn

be independent random variables. Let F be a countable class of functions uniformly bounded

by b. Assume that for all i and all f ∈ F , E[f(Xi)] = 0. We are interested in con-

trolling the random variable Z := supf∈F
∑n

i=1 f(Xi), for which the variance statistics

v2 := supf∈F E[
∑n

i=1(f(Xi))
2] is crucial. Now we are in position to state the classical

Talagrand’s concentration inequalities; see the paper [1].

LEMMA 7.2. For all t > 0, we have

P(Z ≥ E[Z] + t)≤ exp
(
− t2

2(v2 + 2vE[Z]) + 3vt

)
.(35)
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