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Abstract

Many applications, including rank aggregation and crowd-labeling, can be modeled in terms of a
bivariate isotonic matrix with unknown permutations acting on its rows and columns. We consider
the problem of estimating such a matrix based on noisy observations of a subset of its entries,
and design and analyze a polynomial-time algorithm that improves upon the state of the art. In
particular, our results imply that any such n X n matrix can be estimated efficiently in the normalized
Frobenius norm at rate O(n~3/4), thus narrowing the gap between O(n~') and O(n~1/2), which
were hitherto the rates of the most statistically and computationally efficient methods, respectively.
Keywords: permutation-based models, ranking, pairwise comparisons, crowd-labeling, statistical-
computational gap, shape-constrained estimation.

1. Introduction

Structured matrices with entries in the range [0, 1] and unknown permutations acting on their rows
and columns arise in multiple applications, including estimation from pairwise comparisons and
crowd-labeling. Traditional parametric models (Bradley and Terry, 1952; Luce, 1959; Thurstone,
1927; Dawid and Skene, 1979) assume that these matrices are obtained from rank-one matrices
via a known link function. With the goal of increasing model flexibility, a recent line of work
has studied the class of permutation-based models (Chatterjee, 2015; Shah et al., 2017, 2016a).
This class of models imposes only shape constraints on the matrix, such as monotonicity, before
unknown permutations act on the its rows and columns. As a result, it reduces modeling bias
compared to its parametric counterparts while, perhaps surprisingly, producing models that can be
estimated at rates that differ only by logarithmic factors from parametric models. On the negative
side, these advantages of permutation-based models are accompanied by significant computational
challenges. Except for simple models such as the noisy sorting model (Braverman and Mossel,
2008; Mao et al., 2018) where polynomial-time algorithms achieve near-optimal rates, results from
many recent papers show a non-trivial statistical-computational gap in estimation rates for models
with latent permutations (Shah et al., 2017; Chatterjee and Mukherjee, 2016; Shah et al., 2016a;
Flammarion et al., 2016; Pananjady et al., 2017b).
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In particular, the class of matrices satisfying the strong stochastic transitivity condition, or SST
for short, contains all n X n bivariate isotonic matrices with unknown permutations acting on their
rows and columns, with an additional skew-symmetry constraint. While the minimax rate of esti-
mating a matrix in the SST class with ©(n?) Bernoulli observations is ©(n ') in the normalized
Frobenius norm (Shah et al., 2017), the fastest computationally efficient rate is only O(n~1/2),
achieved by spectral methods (Chatterjee, 2015; Shah et al., 2017) and variants of the Borda count
estimator (Shah et al., 2016b; Chatterjee and Mukherjee, 2016; Pananjady et al., 2017a).

Our main contribution in the current work is to tighten this statistical-computational gap. More
precisely, we study the problem of estimating a bivariate isotonic matrix with unknown permutations
acting on its rows and columns, given noisy, partial observations of its entries. Our polynomial-time
algorithm provably achieves the rate of estimation O(n_3/ 4) uniformly over the SST class.

2. Problem setup

We define Cgiso to be the class of matrices in [0, 1]”1*"2 with nondecreasing rows and nonde-
creasing columns, where we assume ny > no for readability. Given a matrix M € R"™*"™2 and
permutations! 7 € &,,, and 0 € &,,, we define the matrix M (7,0) € R™*"2 by specifying its
entries as

[M(7,0)]; ; = Mx(i) () fori € [n1],j € [na].

Also define the class Cgiso(m,0) := {M(m,0) : M € Cgiso} as the set of matrices that are bi-
variate isotonic when viewed along the row permutation 7 and column permutation o, respectively.
The class of matrices that we are interested contains bivariate isotonic matrices whose rows and
columns are acted upon by unknown, and possibly different, permutations:

Cperm : = U Caiso (71-7 U)-
mE€Sy,
0€Gn,

Letting Poi(\) denote a Poisson random variable of mean A, suppose that N’ = Poi(N) noisy
entries” are sampled independently and uniformly with replacement from all entries of M* € Cperm.
More precisely, let £(+7) denote the n1 x ny matrix with 1 in the (i, j)-th entry and 0 elsewhere,
and suppose that X is a random matrix sampled independently and uniformly from the set { & (@:3)
i € [n1], j € [n2]}. We observe N’ independent pairs {(Xy, )}, from the model

Yp = tr(XZ—M*) + zy,

where the observations are contaminated by independent, centered, sub-Gaussian noise zy with
variance parameter (2. Now given N’ observations {( Xy, y¢)})",, let us define the matrix of obser-
vations Y = Y ({(Xy,y¢)} ', ), with entry (i, j) given by

1 1 N

_ : 1{X, = E09)}. (1)
Pobs 1 \V ZéVzl 1{X, = B3} o ye 1{ Xy }

Yi;

In words, the rescaled entry popsY; j is the average of all the noisy realizations of M ; that we have
observed, or zero if the entry goes unobserved.

1. We let &,, represent the set of permutations on the set [n] : = {1,2,...,n}.
2. The rates obtained from such a Poissonized observation model are the same as those obtained without Poissonization
up to constant factors, so the rates stated here also hold for the observation model with exactly /N noisy samples.
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3. Algorithms and results

Our main algorithm relies on two distinct steps: first, we estimate the unknown permutations, and
then project onto the class of matrices that are bivariate isotonic when viewed along the estimated
permutations. The formal meta-algorithm is described below.

Algorithm 1 (meta-algorithm)

e Step 0: Split the observations into two disjoint parts, each containing N’/2 observations, and
construct the matrices Y1) = Y ({Xg, yg}é\[:{2) andY® =Y ({Xg, yg}éV:/N//QJrl).

e Step 1: Use V(1) to obtain the permutation estimates (7, 7).

e Step 2: Return the matrix estimate M (7, 7) : = arg minyccye0 (7,5) 1Y) — M2,

We now present our main permutation estimation procedure that can be plugged into Step 1 of
this meta-algorithm. We first define a certain blocking sub-routine that helps us estimate the row
permutation by ordering entries according to an estimate of the column permutation (and vice versa).
For a partition bl = (bly, ..., blg) of the set [na], we group the columns of a matrix Y € R™*"2
into K blocks according to their indices in bl, and refer to bl as a partition or blocking of the columns
of Y. Given a data matrix Y € R™*"2_ the following blocking subroutine returns a column partition
BL(Y).

Subroutine 1 (blocking)
e Step 1: Compute the column sums {C/(j)}}2; of the matrix Y as

ni
CH) =) Y,
i=1

Let Gpre be the permutation along which the sequence {C'(Gpre(7))};2, is nondecreasing.

n%nz

e Step2: Set7 = 16(¢+ 1)( L log(ning) + 572 log(nlng)) and K = [ngy/7]. Partition
the columns of Y into K blocks by defining
bly = {j € [n2] : C(j) € (=00, 7)},
bly = {j € [n2] : C(j) € [(k—1)7,k7)} for1 < k < K, and
blg = {j € [n2] : C(j) € [(K —1)7,00)}.
Note that each block is contiguous when the columns are permuted by G pre.
e Step 3 (aggregation): Set 3 = ng./’ log(ning). Call a block bl “large” if |bly| > £ and

“small” otherwise. Aggregate small blocks in bl while leaving the large blocks as they are, to
obtain the final partition BL.

More precisely, consider the matrix Y/ = Y'(id, Gpre ) having nondecreasing column sums and
contiguous blocks. Call two small blocks “adjacent” if there is no other small block between
them. Take unions of adjacent small blocks to ensure that the size of each resulting block is
in the range [% B, 2[]. If the union of all small blocks is smaller than % 3, aggregate them all.

Return the resulting partition BL(Y") = BL.

Finally, we are in a position to describe our main two-dimensional sorting algorithm.
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Algorithm 2 (two-dimensional sorting)

e Step 0: Split the observations into two independent subsamples of equal size, and form the
corresponding matrices Y(® and Y@ according to equation (1).

e Step 1: Apply Subroutine 1 to the matrix Y1) to obtain a partition BL = BL(Y(I)) of the
columns. Let K be the number of blocks in BL.

e Step 2: Using the second sample Y (2), compute the row sums
S(i) = Z YZ(JQ) for each i € [n1],
Jj€lna]

and the partial row sums within each block

SeL, (1) = Z Y;(f) foreach i € [n1],k € [K].
JEBLy

Create a directed graph G with vertex set [n1], where an edge u — v is present if either

2
S(v) — S(u) > 16(¢+ 1) (\/n}\?2 log(ning) + n}\?? log(n1n2)>, or (2a)

S (1) = S, (1) > 16(¢ + 1) (/"5 BL logtnunz) + " ()

N
for some k € [K]. (2b)

e Step 3: Compute a topological sort Tygs of the graph G; if none exists, set Tygs = id.

e Step 4: Repeat Steps 1-3 with (Y(i))—r replacing Y for i = 1,2, the roles of n; and ny
switched, and the roles of m and o switched, to compute the permutation estimate Tis.

e Step 5: Return the permutation estimates (Tyds, Otds)-

Recall that a permutation 7 is called a topological sort of G if w(u) < m(v) for every directed
edge u — v. The construction of the graph G in Step 2 dominates the computational complexity,

and takes time O(n3ny/B) = (’)(n%n;/ 2). We have the following guarantee for the two-dimensional
sorting algorithm.

Theorem 1 For any matrix M* € Cperm, we have

1

ninz

— w112 9 nilogni\3/4 mny log2 ny
| R )~ b7 5 (2 v ) | (M) T
with probability at least 1 — 9(nqng) 3.

In particular, setting N = nino, we have proved that our efficient estimator enjoys the rate

1
ning

|| M (Redss Gras) — M*||5. = O <n2—3/4) ,

which is the main theoretical guarantee established in this paper for permutation-based models.
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