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Abstract. We analyze the posterior contraction rates of parameters in Bayesian models via the Langevin diffusion4
process, in particular by controlling moments of the stochastic process and taking limits. Analogous5
to the non-asymptotic analysis of statistical M-estimators and stochastic optimization algorithms, our6
contraction rates depend on the structure of the population log-likelihood function, and stochastic7
perturbation bounds between the population and sample log-likelihood functions. Convergence rates8
are determined by a non-linear equation that relates the population-level structure to stochastic9
perturbation terms, along with a term characterizing the diffusive behavior. Based on this technique,10
we also prove non-asymptotic versions of a Bernstein–von Mises guarantee for the posterior. We11
illustrate this general theory by deriving posterior convergence rates for various concrete examples.12
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1. Introduction. Bayesian inference is one of the central pillars of statistics. In Bayesian15

analysis, we first endow the parameter space with a prior distribution chosen by modelling16

considerations, and then apply Bayes’ rule, combining the prior with the likelihood, so as to17

form the posterior distribution. From a statistical perspective, this posterior is of fundamental18

interest, and there are various questions associated with its behavior, including its consistency19

as the sample size goes to infinity, and from a more refined point of view, its contraction rate20

in various metrics.21

The earliest work on posterior consistency dates back to the seminal work of Doob [9], who22

exhibited conditions under which the posterior distribution is consistent for all parameters23

apart from a set of zero measure. Subsequent work by Freedman [13, 14] provided examples24

showing that this null set can be problematic for Bayesian consistency in non-parametric25

settings. In order to address this issue, Schwartz [40] proposed a general framework for26

establishing posterior consistency for both semiparametric and nonparametric models. Since27

then, a number of researchers have isolated conditions that are useful for studying posterior28

distributions [3, 54, 55].29

Moving beyond posterior consistency, convergence rates for the posterior density function,30

along with associated parameters of models, remains an active area of research. For posterior31

densities, Ghosal et al. [16] gave a general testing framework for proving convergence rates for32

both finite and infinite dimensional models; it has been used by various researchers to analyze33

posterior densities for Dirichlet and nonparametric Beta mixtures [17, 18, 38, 41]. Other34

work [4, 58, 57] established minimax optimal rates for regression functions in nonparametric35

regression models. Related problems include adaptive rates for the density in nonparametric36

Bayesian inference [8, 15], Bayesian linear and non-linear inverse problems [33, 25], and37
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posterior contraction rates of density under misspecified models [24]. Other popular general38

frameworks for analyzing the density functions of posterior distributions include those of Shen39

and Wasserman [42], and Walker et al. [56].40

1.1. From frequentist to Bayesian analysis. The focus of this paper is on posterior41

convergence rates for parameters—namely, how for parametric Bayesian models, the posterior42

distribution assigns mass to certain regions of the parameter space. Our contributions can be43

put into perspective by considering known results for M -estimators. In the world of frequentist44

statistics, estimators based on maximizing empirically-defined objective functions—known as45

M -estimators—play a central role. In the parametric setting, a generic M -estimator takes the46

form47

θ̂n := argmax
θ∈Θ

Fn(θ) where Fn(θ) :=
1
n

∑n
i=1 f(θ;Xi), with Xi

i.i.d.∼ P for i = 1, . . . , n,(1.1)48
49

while the parameters θ range over some constraint set Θ, and the real-valued function f50

has domain Θ×X . Maximum-likelihood is the archetypal example, obtained when f is the51

log-likelihood.52

There is now a rich and well-developed theory—one which exploits ideas from both53

optimization theory and empirical process theory—for deriving sharp non-asymptotic bounds54

on the difference between the estimate θ̂n and the maximizer θ∗ of the population-level55

objective (e.g., see the books [52, 49, 53]). This theory leverages properties of the population-56

level objective F (θ) := E[f(θ,X)] where the expectation is taken with respect to X ∼ P. At a57

high level, there are two key steps in the analysis of an M -estimator: exploiting the structure58

of F , and linking the behavior of the empirical objective Fn to the population objective F . In59

the simplest setting, the population objective is strongly concave around its unique maximum60

θ∗. More generally, when F is differentiable, one can consider a condition of the following type61

−⟨∇F (θ), θ − θ∗⟩ ≥ ψ(∥θ − θ∗∥2),(1.2a)6263

assumed to hold uniformly for all θ in a local neighborhood of θ∗. Here ψ is an increasing64

function on the positive real-line, with ψ(t) = µ
2 t

2 being the one obtained for a µ-strongly65

concave function. The second step is to relate the empirical and population objective, for66

instance by establishing a uniform bound on their gradients—say67

∥∇Fn(θ)−∇F (θ)∥2 ≤ ζ(∥θ − θ∗∥2)εn,(1.2b)6869

where the function ζ is again defined on the positive real line, and εn measures the magnitude70

of the noise.71

When the functions F and Fn satisfy bounds of the form (1.2a) and (1.2b), it can be shown72

that the estimate θ̂n satisfies a bound of the form ∥θ̂n − θ∗∥2 ≾ rn, where rn > 0 is the largest73

positive solution to the inequality174

ψ(r) ≤ εn ζ(r).(1.3)7576

1This solution exists and is unique under mild regularity conditions on the pair (ψ, ζ).

This manuscript is for review purposes only.



DIFFUSION FOR POSTERIOR CONTRACTION 3

This framework is very convenient to use, since optimization theory and empirical process77

theory give us various tools for establishing the local growth condition (1.2a) and the stochastic78

perturbation bound (1.2b).79

By using this framework with care, one can often obtain sharp results in terms of problem80

dimension d, in both the rate itself and sample size lower bound needed to achieve such rates.81

Moreover, the local growth condition (1.2a) is relatively flexible; for instance, it allows for models82

in which the Fisher information matrix is singular (so that the function ψ is not quadratic).83

There are many different instantiations of this general approach in past work, including various84

methods or establishing growth conditions and empirical process bounds [44, 34], analysis85

of iterative optimization algorithm [2, 12, 28, 21], as well as regularized and constrained86

M -estimators [27, 6].87

1.2. Our contributions. Moving back to the Bayesian setup, it is natural to seek to a88

similarly flexible and user-friendly method for establishing finite-sample results for posterior89

contraction. The main contribution of this paper is to do so by using the Langevin diffusion90

process—a stochastic differential equation that can encode the posterior distribution—as a91

lens of analysis.92

There are natural parallels between our mode of analysis, and deterministic analyses of93

optimization algorithms via differential equations [45, 43]. To provide such intuition, recall the94

M -estimator defined by the objective function (1.1). Under the given conditions, its optimum95

θ∗ can be characterized as the limiting point of an ordinary differential equation known as the96

gradient flow, and the rate (1.3) via the gradient flow dynamics for population and empirical97

loss functions, respectively. Now consider the analogous approach for studying not the M -98

estimator, but rather (in the Bayesian set-up) the posterior distribution. It is well-known [37]99

that under mild regularity conditions, the posterior distribution can be represented as the100

stationary distribution of a stochastic differential equation known as the Langevin diffusion.101

Consequently, just as information about the M -estimator can be recovered by studying the102

gradient flow, we can recover information about the posterior distribution by studying the103

Langevin diffusion. In particular, we do so by leveraging stochastic calculus so as to control104

the moments of this diffusion process. At a high-level, our main results involving showing105

that, under assumptions of the form (1.2), the posterior convergence rate is governed by the106

inequality ψ(r) ≤ εnζ(r)+
d
n . By comparison to inequality (1.3), relevant for M -estimation, we107

see that this inequality includes an additional dn term: it characterizes the diffusive behavior108

(with dimension d and sample size n) induced from sampling from the Gibbs measure e−Fn as109

opposed to taking its maximum.110

With this overview in place, we now summarize the different classes of contributions that111

are made in this paper:112

Posterior contraction under one-point strong convexity. We begin with the simplest setting,113

in which the population log-likelihood function is strongly concave in a global sense. Under114

certain regularity conditions,2 we prove that the posterior contraction rate around the true115

parameter is (d/n)1/2. Our technique allows us to specify precise non-asymptotic conditions116

on the sample size and other model properties under which a guarantee of this type holds. In117

2Briefly, we require the prior distribution to be sufficiently smooth and the perturbation error between the
population and empirical log-likelihood function to be well-controlled.
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many practical examples, the results yield sharp dependence on the problem dimension.118

Posterior contraction under weak concavity. We then relax our assumption from strongly119

concave to weakly concave, and prove related guarantees. Our results allow the Fisher120

information matrix to be degenerate, in which case the n−1/2 convergence rate is not possible,121

and the contraction rate is governed by the interplay of a local growth assumption and local122

empirical process bounds. We illustrate these general results for two concrete classes of models:123

over-specified Bayesian location Gaussian mixture models and Bayesian logistic regression124

models.125

Non-asymptotic Bernstein–von Mises (BvM) results. Our final contribution is to establish126

two non-asymptotic BvM results for models with non-degenerate Fisher information. We127

first derive a non-asymptotic upper bound on the Kullback–Leibler (KL) divergence between128

the posterior distribution and the limiting Gaussian distribution. Second, we prove a non-129

asymptotic contraction bounds for the posterior distribution that adapts to the geometry130

of Fisher information. The bound almost matches the tail bounds satisfied by the limiting131

Gaussian law.132

The remainder of the paper is organized as follows. In Section 2, we set up the basic frame-133

work for Bayesian models and introduce a diffusion process that admits posterior distribution134

as its stationary distribution. Section 3 presents the main results whose proofs are in Section 5.135

Section 4 is devoted to implications to concrete examples. We conclude our work with a136

discussion in Section 6 while some technical proofs are in the supplementary material [31].137

Notation. In the paper, the expression an ≿ bn will be used to denote an ≥ cbn for some138

positive universal constant c that does not change with n. Additionally, we write an ≍ bn if139

both an ≿ bn and an ≾ bn hold. For any n ∈ N, we denote [n] = {1, 2, . . . , n}. The notation140

Sd−1 stands for the unit sphere, namely, the set of vectors u ∈ Rd such that ∥u∥2 = 1. Given a141

vector θ ∈ Rd and a scalar r > 0, we use B(θ, r) to denote the closed ball centered at θ with142

radius r. For any subset Θ of Rd, r ≥ 1, and ε > 0, we denote N (ε,Θ, ∥ · ∥r) the covering143

number of Θ under ∥ · ∥r norm, namely, the minimum number of ε-balls under ∥ · ∥r norm to144

cover the entire set Θ. Given a positive-definite matrixM ≻ 0, we use λmax(M) and λmin(M) to145

denote its largest and smallest eigenvalue, respectively, and we use κ(M) := λmax(M)/λmin(M)146

to denote its condition number. Finally, for any x, y ∈ R, we denote x ∨ y = max{x, y}147

and x ∧ y = min{x, y}. Given a pair of probability distributions P and Q, such that P is148

absolutely continuous with respect to Q. The Kullback–Leibler (KL) divergence is defined as149

DKL(P ∥ Q) := EP
[
log dP

dQ

]
.150

2. Background and problem formulation. This section is devoted to background material151

along with formulation of the problems studied in this paper. We first set up the problem of152

studying convergence rates for posterior distributions over parameters in Subsection 2.1, and153

provide background on its representation as the stationary distribution of a Langevin diffusion154

process in Subsection 2.2. Finally, we define the population likelihood function, and introduce155

various smoothness conditions in Subsection 2.3.156

2.1. Posterior contraction rates for parameters. Consider a parametric family of distri-157

butions PΘ = {Pθ | θ ∈ Θ}. Throughout the paper, we assume that each distribution Pθ has158

density pθ with respect to the Lebesgue measure. Let Xn
1 := (X1, . . . , Xn) be a sequence of159

random variables drawn i.i.d. from an underlying distribution P . In the well-specified case,160
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we have that P = Pθ∗ ∈ PΘ for some θ∗ ∈ Θ. However, it is important to note throughout161

our paper, the ground truth distribution P does not have to lie in the parametric family PΘ.162

Instead, the posterior contraction results around the parameter θ∗ hold as long as certain163

geometric conditions around θ∗ are satisfied. These conditions are typically achieved by the164

parameter θ∗ such that P ∗
θ is the best approximation to P within the family. See Section 3 for165

a concrete discussion about these conditions.166

Given a prior π over the parameter space, we define the log-likelihood167

Fn(θ) :=
1

n

n∑

i=1

log pθ(Xi), along with the posterior Q (θ | Xn
1 ) :=

enFn(θ)π(θ)∫
Θ e

nFn(u)π(u)du
.(2.1)168

169

As the sample size n increases, we expect that the posterior distribution will concentrate170

more of its mass over increasingly smaller neighborhoods of the true parameter θ∗. Posterior171

contraction rates allow us to study how quickly this concentration of mass takes place. In172

particular, for a given norm, we study the posterior mass of a ball of the form ∥θ−θ∗∥ ≤ ρ for a173

suitably chosen radius ρ > 0. For a given δ ∈ (0, 1), our goal is to prove statements of the form174

Q
(
∥θ − θ∗∥ ≥ ρ(n, d, δ) | Xn

1

)
≤ δ, with probability at least 1 − δ over the randomly drawn175

data Xn
1 . Our interest is in the scaling of the radius ρ(n, d, δ) as a function of sample size n,176

problem dimension d, and the error tolerance δ, as well as other problem-specific parameters.177

2.2. From diffusion processes to the posterior distribution. The analysis of this paper178

relies on a well-known connection between the posterior distribution and a particular stochastic179

differential equation (SDE) known as the Langevin diffusion. For a parameter β > 0, the180

Langevin diffusion can be written as181

dθt = −1
2∇U(θt)dt+

1√
β
dBt,(2.2)182

183

where (Bt, t ≥ 0) is a standard d-dimensional Brownian motion [36], and U : Rd → R is known184

as the potential function. Suppose that we impose the following regularity conditions on the185

potential: (a) its gradient ∇U is locally Lipschitz, and (b) its gradient satisfies the inequality186

⟨∇U(θ), θ⟩ ≥ c1 ∥θ∥2 − c2 for any θ ∈ Rd, for some strictly positive constants c1, c2. Under187

these conditions, by known results on general Langevin diffusions [1], the solution to the188

Langevin diffusion (2.2) exists and is unique in the strong sense. Furthermore, the density of189

θt converges in L2 to the stationary distribution with density proportional to e−βU .190

In the context of Bayesian inference, we can apply this argument to the potential function191

Un(θ) := −Fn(θ)− n−1 log π(θ) and β = n. Doing so will require us to verify that Un satisfies192

the requisite regularity conditions. Assuming this validity, we are guaranteed that the posterior193

distribution Q(θ | Xn
1 ) is the stationary distribution of the SDE194

dθt =
1
2∇Fn(θt)dt+ 1

2n∇ log π(θt)dt+
1√
n
dBt,(2.3)195

196

with initial condition θ0 = θ∗. Moreover, the density of θt converges in L2 to the posterior197

density.198

It should be noted that this SDE-based representation of the posterior underlies various199

algorithms for drawing samples from the posterior distribution; we refer the reader to the200
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classical literature [47, 48] and the recent progress [7, 10, 11] for some results in this direction.201

In this paper, we exploit this SDE-based representation for statistical analysis (as opposed to202

efficient computation). In particular, by characterizing the behavior of the process (θt, t ≥ 0)203

as a function of time, we can obtain bounds on the posterior distribution by taking limits. The204

following proposition guarantees the convergence of the moments based on a uniform-in-time205

moment upper bound and a convergence in total variation distance.206

Proposition 2.1. Consider a sequence of distributions (πt)t≥0 on Rd such that dTV(πt, π
∗) →207

0, and suppose that supt≥0 Eπt [∥X∥p2] < +∞ and Eπ∗ [∥X∥p2] < +∞ for any integer p ≥ 2. We208

then have lim
t→+∞

Eπt [∥X∥p2] = Eπ∗ [∥X∥p2].209

See Appendix C.1 in our supplementary material [31] for the proof of this proposition.210

Given this limiting behavior, we can establish posterior contraction rates for the parameters211

by controlling the moments of the diffusion process {θt}t≥0. The main theoretical results of212

this paper are obtained by following this general roadmap.213

2.3. From empirical to population likelihood. Before proceeding to our main results, let214

us introduce some additional definitions and conditions. A useful notion for our analysis is215

the population log-likelihood F . It corresponds to the limit of log-likelihood function Fn, as216

previously defined in equation (2.1), as the sample size n goes to infinity—viz.217

F (θ) := E [log pθ(X)] ,(2.4)218219

where the expectation is taken with respect to X ∼ Pθ∗ . Throughout the paper, we impose220

the following smoothness conditions on the log prior density log π:221

(A) There exists a non-negative constant B ≥ 0 such that222

⟨∇ log π(θ), θ − θ∗⟩ ≤ B ∥θ − θ∗∥2 for all θ ∈ Rd.223224

Although the constant B in Assumption (A) can depend on θ∗, we suppress this dependence225

so as to keep the notation streamlined. When the function log π is globally Lipschitz (so that226

∥∇ log π(θ)∥2 is uniformly bounded), Assumption (A) is automatically satisfied. But the one-227

sided nature of Assumption (A) makes it flexible and allows many practical prior distributions.228

For example, given scalars α, β > 0, for the prior distribution π(θ) ∝ exp(−β−1 ∥θ∥α2 ), we have229

⟨∇ log π(θ), θ − θ∗⟩ = α

β
∥θ∥α−2

2

{
⟨θ∗, θ − θ∗⟩ − ∥θ − θ∗∥22

}
230

≤
{
2α−2 α

β ∥θ∗∥α−1
2 · ∥θ − θ∗∥2 ∥θ − θ∗∥2 ≤ ∥θ∗∥2 ,

0 otherwise,
231

232

so that Assumption (A) is satisfied by B = 2α−2 α
β ∥θ∗∥α−1

2 .233

3. Main results. We now turn to our main results. In Subsection 3.1, we present a result234

( Theorem 3.1) that establishes the posterior convergence under strong concavity. Subsection 3.2235

answers the same question when the population log-likelihood is only weakly concave; see236

the statement of Theorem 3.2. Finally, in Subsection 3.3, we pursue a more fine-grained237

direction by establishing the non-asymptotic Bernstein–von Mises theorems (see Proposition 3.4238

and Theorem 3.5)239
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3.1. Posterior contraction under strong concavity. We begin with results under strong240

concavity conditions. For this part, the following assumptions underlie our analysis:241

(S.1) There exists a scalar µ > 0 such that242

−⟨∇F (θ), θ∗ − θ⟩ ≥ µ ∥θ − θ∗∥22 for any θ ∈ Rd.243244

(S.2) There exist non-negative functions ε1 and ε2 that map from N× (0, 1] to R+ such that245

for any radius r > 0 and any δ ∈ (0, 1), we have246

sup
θ∈B(θ∗,r)

∥∇Fn(θ)−∇F (θ)∥2 ≤ ε1(n, δ)r + ε2(n, δ) with prob. at least 1− δ.247

248

Assumption (S.1) is a standard strong concavity condition of function F around θ∗, whereas249

Assumption (S.2) provides uniform control on the gradients of the population and sample250

log-likelihoods. It is important to note that these assumptions, along with other assumptions to251

follow, do not require the data-generating distribution P to belong to the specified parametric252

class. Indeed, the results throughout this paper apply to both well-specified and mis-specified253

models. In the latter case, the parameter θ∗ is typically the KL-projection of the true model,254

i.e., θ∗ ∈ argminθ∈ΘDKL(P ∥ Pθ).255

Given the above assumptions, we are ready to state our first result regarding the posterior256

convergence rate of parameters for a strongly concave population log-likelihood:257

Theorem 3.1. Suppose that Assumptions (A), (S.1), and (S.2) hold. Then there is a258

universal constant c such that for any δ ∈ (0, 1) and any sample size n for which ε1(n, δ) ≤ µ
6 ,259

we have260

Q

(
∥θ − θ∗∥2 ≥ c

√
d
nµ + B

nµ + ε2(n,δ)
µ + c

√
log(1/δ)
nµ

∣∣∣ Xn
1

)
≤ δ261

262

with probability 1− δ, taken with respect to the random observations Xn
1 .263

See Subsection 5.1 for the proof of Theorem 3.1.264

This result guarantees posterior convergence at the rate (d/n)1/2 when the log-likelihood265

is strongly concave. To be clear, such rate of posterior contraction for the parameters can be266

derived from the asymptotic behavior of the posterior distribution via the classical Bernstein–267

von Mises theorem. However, the guarantee in Theorem 3.1 is non-asymptotic, and provides268

explicit dependence of the rate on other model parameters, including B and µ, both of which269

might vary as a function of θ∗. At the moment, we do not know whether the dependence of270

these parameters is optimal. This guarantee is valid as long as the error term ε1(n, δ) is less271

than an absolute constant; such a bound typically holds as long as n ≳ d. In Theorem 3.5272

to follow, we also provide near-optimal non-asymptotic contraction bounds on the posterior273

distribution that nearly match the exact shape of the posterior distribution.274

Although our set-up is focused on simple sampling models, it should be noted that our275

method is sufficiently flexible so as to accommodate certain non-i.i.d. forms of sampling, along276

with mis-specified models. After the first version was posted, Mazumdar et al. [29] used a277

variant of this result to study the posterior contraction for Thompson sampling in contextual278

bandits. In their problem, the data are adaptively collected instead of being i.i.d., and the279

empirical process bound (S.2) can be verified using martingale concentration inequalities.280
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While this paper focuses on the contraction of posterior distribution itself, it is worth281

mentioning that the proof techniques of Theorem 3.1 can be extended to study the contraction282

behavior of discretized Langevin diffusion. In particular, by expanding the discrete-time283

evolution of the iterates following Subsection 5.1, we can derive recursive relations on the284

moment bounds for the distance between iterates and θ∗ using Assumptions (S.1) and (S.2).285

The solution to such recursion will lead to the rates in Theorem 3.1. This analysis tool does286

not depend on the ergodicity of the discretized diffusion. We defer a detailed discrete-time287

analysis to future work.288

3.2. Posterior contraction under weak concavity. Theorem 3.1 requires global strong289

concavity, which is relatively strong. In this section, we relax this assumption in two ways:290

we relax the growth condition locally around θ∗ so as to allow for weak concavity, and the291

global behavior need not coincide with this local behavior. Weakly concave log-likelihoods292

arise for singular problems, for which the Fisher information matrix at the true parameter θ∗293

is rank-degenerate. Examples of such singular problems include Bayesian non-linear regression294

models with certain choices of link functions [30], as well as over-specified mixture models [39],295

in which the fitted mixture model has more components than the true mixture distribution.296

The mismatch between local and global concavity conditions exists not only in such models,297

but also in non-singular problems such as Bayesian logistic regression. We discuss implications298

of these examples in Section 4.299

Our analysis in the weakly concave setting is based on the following assumptions:300

(W.1) There exists a convex, non-decreasing function ψ : [0,+∞) → R such that301

−⟨∇F (θ), θ − θ∗⟩ ≥ ψ(∥θ − θ∗∥2) for any θ ∈ Rd.302303

Assumption (W.1) characterizes the weak concavity of the function F around the global304

maxima θ∗. This condition can hold when the log-likelihood is locally strongly concave around305

θ∗ but only weakly concave in a global sense, or it can hold when the log-likelihood is weakly306

concave but not strongly concave. An example of the former type is the logistic regression model307

analyzed in Subsection 4.1, whereas an example of the latter type is given by over-specified308

Gaussian mixture models Subsection 4.2.309

Our next assumption controls the deviation between the gradients of the population and310

sample likelihoods, and involves a failure probability δ ∈ (0, 1):311

(W.2) There exist a function ε : N × (0, 1] 7→ R+ and a non-decreasing function ζ : R → R312

with that ζ(0) ≥ 0 such that for any radius r > 0, we313

sup
θ∈B(θ∗,r)

∥∇Fn(θ)−∇F (θ)∥2 ≤ ε(n, δ)ζ(r) with prob. at least 1− δ.314

315

This type of localized empirical process bounds appeared in many existing literature in the316

study of M -estimators [50] and iterative algorithms [2, 12]. It is important to note that the317

bound depends on the radius r, making it possible to yield near-optimal rates in singular318

mixture models [12].319

The previous conditions involved two functions, namely ψ and ζ. We let ξ : R+ → R320

denote the inverse function of the strictly increasing function r 7→ rζ(r). Our third assumption321

imposes certain inequalities on these functions and their derivatives:322
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(W.3) The function r 7→ ψ(ξ(r)) is convex, and ψ and ζ satisfy the differential inequalities323

rψ′(r)ζ(r)
(i)

≥ rψ(r)ζ ′(r) + ψ(r)ζ(r), and324

r2ψ′′(r)ζ(r) + rψ′(r)ζ(r)
(ii)

≥ 3ψ(r)ζ(r) + r2ψ(r)ζ ′′(r) for all r > 0.325326

These differential inequalities are needed controlling the moments of the diffusion process327

{θt}t>0 in equation (2.3). In our discussion of concrete examples, we provide instances for328

which they are satisfied.329

Our result involves a certain fixed point equation that depends on the parameters and330

functions in our assumptions. In particular, for any tolerance parameter δ ∈ (0, 1) and331

sample size n, consider the following fixed point equation in the variable z > 0:332

ψ(z) = ε(n, δ)ζ(z)z + B
n z +

d
n + log(1/δ)

n .(3.1)333334

In order to ensure that this equation has a unique positive solution, our final assumption335

imposes certain condition on the growth of the functions ψ and ζ:336

337

(W.4) The limit lim inf
z→+∞

ψ(z)
zζ(z) is strictly positive, and the sample size n and tolerance338

parameter δ ∈ (0, 1) are such that ε(n, δ) < lim inf
z→+∞

ψ(z)
zζ(z) .339

With this set-up, we are now ready to state our second main result:340

Theorem 3.2. Suppose that Assumptions (A), and (W.1)— (W.3) hold. Then for any341

given sample size n and δ ∈ (0, 1) such that Assumption (W.4) holds, equation (3.1) has a342

unique positive solution z∗(n, δ) such that343

Q

(
∥θ − θ∗∥2 ≥ z∗(n, δ) | Xn

1

)
≤ δ with probability 1− δ w.r.t. Xn

1 .(3.2)344
345

See Subsection 5.2 for the proof of Theorem 3.2.346

A few comments are in order. First, the convergence guarantee (3.2) depends on the weak347

convexity function ψ and the perturbation function ζ through the non-linear equation (3.1).348

In order to understand the rate, we consider the following pair of fixed-point equations349

ψ(z) = 2ε(n, δ)ζ(z)z, with the solution z∗mle(n, δ)(3.3a)350

ψ(z) = 2Bn z + 2 dn + 2 log(1/δ)
n , with the solution z∗pop(n, δ).(3.3b)351352

It is easy to see that z∗(n, δ) ≤ max
{
z∗mle(n, δ), z

∗
pop(n, δ)

}
.3 This establishes that the posterior353

contraction rates in Theorem 3.2 are fundamentally determined by two sources of errors: on the354

one hand, it is known (see e.g. [50]) that the solution z∗mle(n, δ) to equation (3.3a) determines355

(up to constant factors) the rate of convergence for the maximal likelihood estimator; on the356

3Suppose the converse is true. We have ψ
(

z∗(n, δ)
)

> 2ε(n, δ)ζ
(

z∗(n, δ)
)

z∗(n, δ) and ψ
(

z∗(n, δ)
)

>

2B
n
z∗(n, δ) + 2 d

n
+ 2 log(1/δ)

n
. Taking the average of two inequalities contradicts the fact that z∗(n, δ) is

the fixed point.
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other hand, the solution z∗pop(n, δ) to equation (3.3b) captures the diffusive behavior from357

the posterior distribution itself. In particular, the term B
n z is usually negligible as z∗pop ≪ 1358

and B = O(
√
d), and the solution to the equation ψ(z) = d+log(1/δ)

n essentially determines359

the contraction rate of the “population-level posterior” Gibbs distribution whose density is360

proportional to enF (θ), when the function −⟨∇F (θ), θ − θ∗⟩ locally behaves like ψ(∥θ − θ∗∥2).361

We suspect that such an additional term is unavoidable for posterior contraction results, and362

we defer a rigorous justification via asymptotic shape of the re-scaled posterior to future works.363

Second, at least in general, it is not possible to compute an explicit form for the positive364

solution z∗(n, δ) to the non-linear equation (3.1). However, for certain forms of the function365

ψ and ζ, we can derive a relatively simple upper bound. For instance, given some positive366

parameters (α, β) such that α > β, suppose that these functions are defined locally, in a367

interval above zero, as follows:368

ψ(r) = rα+1, and ζ(r) = rβ for all r in some interval [0, r̄).(3.4a)369370

Moreover, suppose that the perturbation function takes the form371

ε(n, δ) =
√(

d+ log(1δ )
)
/n.(3.4b)372

373

As shown in in Section 4, these particular forms arise in several statistical models, including374

Bayesian logistic regression and over specified Bayesian Gaussian mixture models. Under these375

conditions, we have the following simple upper bound:376

Corollary 3.3. Assume that the functions ψ, ζ have the local behavior (3.4a), and the377

perturbation term ε(n, δ) has the form (3.4b). If, in addition, the global forms of ψ and ζ378

satisfy Assumption (W.3), then for sufficiently large n, the scalar z∗(n, δ) from Theorem 3.2379

satisfies the bound z∗(n, δ) ≤ c
(
d+log(1/δ)

n

) 1
2(α−β) ∨

(
d+log(1/δ)

n

) 1
α+1

+
(
B
n

) 1
α .380

Note that Corollary 3.3 ensures that the posterior has the following contraction property381

Q

(
∥θ − θ∗∥2 ≥ c

(
d+log(1/δ)

n

) 1
2(α−β)

∧ 1
α+1

+
(
B
n

) 1
α

∣∣∣∣ X
n
1

)
≤ δ with prob. 1− δ(3.5)382

383

with respect to the training data. The posterior convergence rate scales as (d/n)
1

2(α−β) when384

α ≥ 2β + 1, in which case the posterior contraction rates match the maximal likelihood. On385

the other hand, this rate becomes (d/n)
1

α+1 when α < 2β + 1, and the posterior contraction is386

slower than maximal likelihood, owing to its diffusive behavior.387

Theorem 3.2 and Corollary 3.3 rely on global conditions (W.1) and (W.2). Although388

these conditions can be verified for many practical examples (see Section 4), they can be389

restrictive in some cases, especially when multiple local maxima of the population-level function390

F exist. Using our techniques, it is possible to prove similar results under local assumptions.391

In particular, suppose that these assumptions hold only in a local ball B(θ∗, r0); then, the392

non-asymptotic contraction rates in Theorem 3.2 and Corollary 3.3 are available as long as we393

can show the posterior mass Q
(
B(θ∗, r0)c | Xn

1

)
is small with high probability. To obtain these394

rates, we could apply the arguments in the proof of Theorem 3.2 to a modified distribution,395
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which matches the shape of Q(· | Xn
1 ) inside the ball B(θ∗, r0), while exhibiting desirable396

growth and smoothness conditions outside. We defer the detailed arguments based on local397

assumptions as well as the study of the radius r0 to future work.398

3.3. Non-asymptotic Bernstein–von Mises results. In this section, we develop non-399

asymptotic Bernstein–von Mises results using the diffusion process (2.3). Under mild assump-400

tions on the population-level and empirical-level landscapes, we establish the KL divergence401

between the posterior distribution and the limiting Gaussian distribution, as well as near-402

optimal shape-dependent posterior contraction results.403

In order to obtain the non-asymptotic Bernstein–von Mises results, we first need the404

following assumptions on the second order derivatives with respect to the parameters (or405

equivalently Hessian matrices) of the empirical and population log-likelihoods:406

(BvM.1) There exists A > 0 such that the population log-likelihood function F satisfies the407

one-point Lipschitz condition:408

∀θ ∈ Rd, |||∇2F (θ)−∇2F (θ∗)|||op ≤ A ∥θ − θ∗∥2 .409410

(BvM.2) For any δ > 0, there exist non-negative functions ε
(2)
1 and ε

(2)
2 with domain N× (0, 1]411

such that412

sup
θ∈B(θ∗,r)

|||∇2Fn(θ)−∇2F (θ)|||op ≤ ε
(2)
1 (n, δ)r + ε

(2)
2 (n, δ),413

414

for any radius r > 0 with probability at least 1− δ.415

Additionally, we also impose a smoothness assumption on the prior distribution π416

∥∇ log π(θ1)−∇ log π(θ2)∥2 ≤ L2 ∥θ1 − θ2∥2 .(PS)417418

The first condition (BvM.1) is a standard smoothness condition needed to prove quantita-419

tive results about asymptotic normality (e.g., the paper [35]), and satisfied by many models such420

as exponential family models, location density models, as well as their mixtures and hierarchical421

composition. The second condition (BvM.2) is an empirical process condition on the Hessian422

matrix ∇2Fn. This condition can usually be verified using suitable concentration bounds for423

each θ, as well as smoothness conditions on ∇2Fn used in controlling metric entropies. Both424

assumptions are naturally needed: the limiting Gaussian law N
(
θ̂(n), (nH∗)−1

)
, which depends425

on the population-level Hessian at the point θ∗. The shape of posterior distribution, on the426

other hand, depends on the sample-level Hessian ∇2Fn in a local neighborhood of θ∗. These427

two conditions are needed to relate the shape of the sample-level posterior with the matrix H∗.428

The condition (PS) on the prior distribution is relatively mild and satisfied by many practical429

choices including Gaussian. As before, we note that these assumptions do not require the430

model to be well-specified, and our non-asymptotic Bernstein–von Mises theorems applies to431

the mis-specified case, where θ∗ is the KL-projection of the model to this parametric class.432

Consider the MAP estimate θ̂(n) := argmaxθ∈Rd

(
Fn(θ) +

1
n log π(θ)

)
. Then, we have the433

following upper bound on the difference between the posterior distribution of the parameters434

and the Gaussian distribution with mean θ̂(n) and covariance matrix (nH∗)−1, where H∗ :=435

−∇2F (θ∗).436
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Proposition 3.4. Under Assumptions (BvM.1), (BvM.2) and PS, suppose that H∗ ≻ 0,437

and that ∥θ̂(n) − θ∗∥2 ≤ σ
√

d
n and EQ(∥θ− θ∗∥42 | Xn

1 )
1/4 ≤ σ

√
d
n with prob. 1− δ. Then there438

exists a constant c such that the KL divergence DKL(Q(· | Xn
1 ) ∥ N (θ̂(n), (nH∗)−1)) is at most439

c · 1
λmin(H∗)

(
A2d2σ4

n +
ε
(2)
1 (n,δ)2d2σ4

n + σ2
(
ε
(2)
2 (n, δ)2 +

L2
2
n2

)
d

)
with prob. at least 1− 2δ.440

441

See Appendix A.2 for the proof of this claim.442

A few remarks are in order. First, assuming that the problem-dependent constants443

(A, σ, L2) are of constant order, and that the deviation bound scales as ε
(2)
2 (n, δ) = O(1/

√
n),444

Proposition 3.4 shows that the KL divergence between the posterior distribution and the445

Gaussian limit is of order O(1/n); second, the non-asymptotic behavior of posterior distribution446

depends on the Hessian matrixH∗ = −∇2F (θ∗). In the well-specified case where the data points447

Xn
1 are i.i.d. samples from the distribution Pθ∗ , the standard Fisher-information identity H∗ =448

Eθ∗
[
∇ log pθ∗(X)∇ log pθ∗(X)⊤

]
holds true, and the Bayesian credible set is asymptotically449

the same as the confidence set in the frequentist sense. On the other hand, in the mis-specified450

models where θ∗ = argminθ∈ΘDKL(P ∥ Pθ), the limiting Gaussian law is N (θ̂(n), (nH∗)−1),451

depending on the Hessian matrix but not the covariance of the log-likelihood. This result452

coincides with the asymptotic Bernstein–von Mises theorem for mis-specified parametric453

models [23], providing a non-asymptotic characterization. Using Pinsker’s inequality and454

Talagrand’s T2-inequality [46], the KL divergence bound can also be transformed into bounds455

in term of total variation and Wasserstein-2 distances, yielding a non-asymptotic O(1/
√
n)456

rate of convergence.457

We can also use the diffusion process approach to derive more fine-grained concentration458

bounds for the posterior distribution, with behavior matching the limiting Gaussian law. Doing459

so requires the following stronger version of the posterior contraction condition:460

(
EQ

[
∥θ − θ∗∥2p2 | Xn

1

])1/p
≤ σ2pd

n
, for all p > 0 with probability at least 1− δ.(3.6)461

462

In addition, we define the function463

Hn(t, δ) := (A+ ε
(2)
1 (n, δ))2 · σ

4d2t2

n2
+
σd

n

(
ε
(2)
2 (n, δ)2 +

L2
2

n2
+ (A+ ε

(2)
1 (n, δ))2

σd

n

)
,464

465

which plays the role of a higher-order term. Equipped with this notation, we have:466

Theorem 3.5. Suppose that conditions (BvM.1), (BvM.2), and (PS) are in force, the467

Hessian H∗ is strictly positive definite, and the high-probability posterior contraction con-468

dition (3.6) holds. Then for any δ ∈ (0, 1), uniformly over all ω ∈ (0, 1) and t > 0, we469

have470

Q

(∥∥∥θ − θ̂(n)
∥∥∥
2

H∗
≥ (1 + ω)

d

n
+ c

1 + log κ(H∗)
ω

(
t

n
+Hn(t, δ)

) ∣∣∣∣ X
n
1

)
≤ e−t,(3.7)471

472

with probability at least 1− δ.473
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See Appendix A.1 for the proof of the theorem.474

A few remarks are in order. Note that the limiting Gaussian density γn = N
(
0, (nH∗)−1

)
475

satisfies a tail bound of the form γn

(
∥θ − θ̂(n)∥2H∗ ≥ d

n + t
n

)
≤ e−t/2 for any t > 0. Unless the476

posterior is actually Gaussian in finite samples, it cannot satisfy this bound exactly. However,477

Theorem 3.5 provides a bound with near-matching behavior: note that the leading-order term478

scales d
n , matching the asymptotics with a pre-factor 1 + ω that can be made arbitrarily close479

to 1 (at the expense of the other term). The t
n dependency on the tail probability comes480

with a mild log κ(H∗) factor due to technical reasons. The bound also contains a high-order481

term Hn(t, δ), which scales as O(n−2). It is also worth noticing that the terms in Theorem 3.5482

depend on the tail probability ν = e−t only logarithmically, allowing for very small value of483

ν. We can therefore use equation (3.7) to construct non-asymptotic credible sets of ellipsoid484

shape, adapted to the geometry of local Hessian matrix H∗.485

Proof outline: The proofs of both Proposition 3.4 and Theorem 3.5 rely on a first-order486

approximation of the gradient ∇Fn. In particular, the diffusion process (2.3) can be written in487

the form dθt = −1
2H

∗(θt−θ̂(n))dt+ 1
2en(θt)dt+

1
2n log π(θt)dt+

1√
n
dBt, where we have defined the488

linearization error en(θ) := ∇Fn(θ) +H∗(θ− θ∗). Under the smoothness assumption (BvM.1)489

and the empirical process bound (BvM.2), one can show that ∥en(θ)∥2 ≤ ∥θ − θ∗∥2 ·O(
√
d/n)490

with high probability. When this error term is ignored, the diffusion process is an Ornstein–491

Uhlenbeck process whose stationary distribution is N
(
θ̂(n), (nH∗)−1

)
. Therefore, given the492

non-asymptotic bounds on the error en(θ) stated above, we can provide a non-asymptotic493

characterization of the distance between the stationary distribution and the limiting Gaussian494

law. In order to prove Proposition 3.4, we use the Gaussian log-Sobolev inequality [19] to495

control the KL divergence, whereas proving Theorem 3.5 is based on using Itô calculus to496

study the growth of a Lyapunov function defined using the metric induced by H∗. Full proofs497

for the two results are given in Appendix A.2 and Appendix A.1, respectively.498

4. Some illustrative examples. Having developed some general theory, we now use it499

to derive some concrete results for two examples of interest in statistical analysis: Bayesian500

logistic regression and Gaussian mixture models.501

4.1. Bayesian logistic regression. Logistic regression is a classical way of modelling the502

relationship between a binary response variable Y ∈ {−1,+1} and a vector X ∈ Rd of503

explanatory variables (e.g., see the book [30]). In the logistic regression model, the pair (X,Y )504

are related by the conditional distribution505

P (Y = 1 | X, θ) = e⟨X, θ⟩

1+e⟨X, θ⟩ , where θ ∈ Rd is a parameter vector.(4.1)506
507

Suppose that we observe a collection Zn1 = {Zi}ni=1 of n i.i.d paired samples Zi = (Xi, Yi),508

each generated in the following way. First, the covariate vector Xi is drawn from a standard509

Gaussian distribution N(0, Id), and then the binary response Yi is drawn according to the510

conditional distribution P (· | Xi, θ
∗) from equation (4.1), where θ∗ ∈ Rd is a fixed but unknown511

value of the parameter vector. Given these assumptions, the sample log-likelihood function512

of the samples Zn1 takes the form FRn (θ) := 1
n

∑n
i=1 {logP (Yi | Xi, θ) + log φ(Xi)}, where φ513

denotes the density of a standard normal vector. Combining this log-likelihood with a given514
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prior π over θ yields the posterior distribution in the usual way. We assume that the prior515

function π satisfies Assumption (A), and recall the constant B defined in this assumption.516

Throughout this section, we also assume that the norm ∥θ∗∥2 is a universal constant independent517

of (n, d), and we suppress the dependence on this parameter.518

With this set-up, the following result establishes the posterior convergence rate of θ around519

θ∗, conditionally on the observations Zn1 .520

Corollary 4.1. For any δ ∈ (0, 1), given n
logn ≥ c′d log(1δ ) i.i.d. samples from the Bayesian521

logistic regression model (4.1), we have Q

(
∥θ − θ∗∥2 ≥ c

{√
d
n +

√
log(1/δ)

n + B
n

}
| Zn1

)
≤ δ522

with probability 1− δ over the data Zn1 .523

See Appendix B.1 for the proof of this claim.524

A few comments are in order. First, the result of Corollary 4.1 shows that for Bayesian525

logistic regression model (4.1), the posterior convergence rate for the parameter is of the526

order (d/n)1/2. Furthermore, this result also gives a concrete dependence of the rate on B527

characterizing the degree to which the prior is concentrated away from the true parameter. By528

taking the standard Gaussian prior π = N (0, Id), we have B ≤ ∥θ∥2, which is bounded by a529

universal constant independent of the pair (n, d).530

It is important to note that Corollary 4.1 is valid as long as the sample size n is mildly531

larger than the problem dimension d (up to logarithmic factors). To our knowledge, this is the532

first time that a sharp non-asymptotic posterior contraction result is established in this regime.533

Let us sketch how Theorem 3.2 can be applied so as to prove this corollary. Denote534

FR := E[FRn ] as the population-level log-likelihood function. The first step in our proof, as535

given in Appendix B.1, is to show that there are universal constants c, c1, c2 such that536

−⟨∇FR(θ), θ − θ∗⟩ ≥ c1

{
∥θ − θ∗∥22 , for all ∥θ − θ∗∥2 ≤ 1

∥θ − θ∗∥2 , otherwise
, and(4.2a)537

sup
θ∈Rd

∥∥∇FRn (θ)−∇FR(θ)
∥∥
2
≤ c2

(√
d
n +

√
log(1/δ)

n + log(1/δ)
n

)
,(4.2b)538

539

for any r > 0 with probability 1− δ as long as n
logn ≥ cd log(1/δ). Using these results, we show540

that Assumptions (W.1) and (W.2) hold with541

ψ(r) = c1

{
r2 for all r ∈ (0, 1), and

r otherwise
, and ζ(r) = c2 for all r > 0.(4.3)542

543

We can check that the functions ψ and ζ satisfy the conditions in Assumptions (W.3)544

and (W.4). Therefore, applying Theorem 3.2 to these functions yields the posterior contraction545

rate claimed in Corollary 4.1. See Appendix B.1 for the details.546

4.2. Over-specified Bayesian Gaussian mixture models. Gaussian mixtures are widely547

used for modelling heterogeneous datasets; clusters in the data are naturally associated with548

different mixture components [26]. In fitting such models, the true number of components is549

generally unknown, and several approaches have been proposed to deal with this challenge.550

One of the most popular methods is to deliberately include a large number of components,551
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leading to what are known as overspecified Gaussian mixture models [39]. While the behavior552

of posterior densities in such mixture models is relatively well-understood [17], the behavior553

of the posterior in terms of its parametric components is not as well understood. When the554

covariance matrices are known and the parameter space is bounded, the location parameters555

have been shown to have posterior convergence rates of the order n−1/4 in the Wasserstein-2556

metric [32]. However, neither the dependence on dimension d nor on the true number of557

components have been established.558

In this section, we consider the behavior of overspecified Gaussian mixture models in a559

particular setting, and provide convergence rates for the parameters with precise dependence560

on the dimension d, and without requiring any boundedness assumption. In order to model the561

simplest form of over-specification, suppose that we fit a Bayesian location mixture model to a562

collection of i.i.d. samples Xn
1 = (X1, . . . , Xn) drawn from a Gaussian distribution N (θ∗, Id).563

(For concreteness, we set θ∗ = 0.) We study the behavior of the Bayesian Gaussian mixture564

model565

θ ∼ π(·), Vi ∈ {−1, 1} i.i.d.∼ Cat(1/2, 1/2), Xi | Vi, θ i.i.d.∼ N (Viθ, Id),(4.4)566567

where Cat(1/2, 1/2) stands for the categorical distribution with parameters (1/2, 1/2). We568

assume that the prior π satisfies the smoothness condition (cf. Assumption (A)); one example569

is a Gaussian distribution (over the location parameter θ. Our goal in this section is to570

characterize the posterior contraction rate of the location parameter θ around θ∗.571

In order to do so, we first define the sample log-likelihood function FGn given data Xn
1 .

It has the form FGn (θ) := 1
n

∑n
i=1 log

(
1
2φ(Xi;−θ, Id) + 1

2φ(Xi; θ, Id)
)
, where x 7→ φ(x; θ, Id) =

(2π)−d/2e−∥x−θ∥22/2 denotes the density of multivariate Gaussian distribution N (θ, σ2Id). Simi-
larly, the population log-likelihood function is given by

FG(θ) := EX

[
log

(
1

2
φ(X;−θ, Id) +

1

2
φ(X; θ, Id)

)]
,

where the outer expectation in the above display is taken with respect to X ∼ N (θ∗, Id).572

In Appendix B.2, we prove that there is a universal constant c1 > 0 such that573

−⟨∇FG(θ), θ − θ∗⟩ ≥
{
c1 ∥θ − θ∗∥42 , for all ∥θ − θ∗∥2 ≤

√
2

4c1

(
∥θ − θ∗∥22 − 1

)
, otherwise

,(4.5a)574

575

and moreover, there are universal constants (c, c2) such that for any δ ∈ (0, 1), given a sample576

size n ≥ cd log(1/δ), we have577

sup
θ∈B(θ∗,r)

∥∇FGn (θ)−∇FG(θ)∥2 ≤ c2

(
r + 1√

n

) (√
d
n +

√
log(log(n/δ))

n

)
with prob. 1− δ.

(4.5b)

578

579

Given the above results, the functions ψ and ζ in Assumptions (W.1) and (W.2) take580

the form581

ψ(r) =

{
c1r

4, for all 0 < r ≤
√
2

4c1
(
r2 − 1

)
, otherwise

, and ζ(r) = r +
1√
n

for all r > 0.(4.6)582

583
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These functions satisfy the conditions of Assumptions (W.3) and (W.4). Therefore, it leads to584

the following result regarding the posterior contraction rate of parameters under overspecified585

Bayesian location Gaussian mixtures (4.4):586

Corollary 4.2. Given the overspecified Bayesian location Gaussian mixture model (4.4), there587

are universal constants c, c′ such that given any δ ∈ (0, 1) and a sample size n ≥ c′d log(1/δ),588

we have Q

(
∥θ − θ∗∥2 ≥ c

(
d
n + log(log(n/δ))

n

)1/4
+
(
B
n

)1/3 ∣∣ Xn
1

)
≤ δ with probability 1− δ over589

the data Xn
1 . Here, B is the non-negative constant in Assumption (A).590

See Appendix B.2 for the proof of Corollary 4.2.591

The O(n−1/4) rate of convergence in Corollary 4.2 is consistent with the previous result592

with location parameters in overspecified Bayesian location Gaussian mixtures [5, 22, 32], which593

is also known to be minimax optimal [20]. When taking the problem dimension into account,594

to our knowledge, the (d/n)1/4 posterior contraction rate is a novel result, and matches existing595

analyses for frequentist methods [12]. Similar to the logistic regression case, Corollary 4.2596

only requires the sample size n to be mildly larger than the dimension d. The non-asymptotic597

posterior contraction results are also established for the first time in such a regime. Finally,598

our result does not require the boundedness of the parameter space, in contrast to past599

work [5, 22, 32].600

5. Proofs. In this section, we collect the proofs of the main theorems.601

5.1. Proof of Theorem 3.1. Throughout the proof, in order to simplify notation, we602

omit the conditioning on the σ-field Fn := σ(Xn
1 ); it should be taken as given. Introduce the603

quantity α = 1
2µ− ε1(n, δ) >

µ
6 . Our proof relies on proving the following auxiliary bound604

1

2
eαt ∥θt − θ∗∥22 ≤

1√
n
Mt + Un

(eαt − 1)

2α
,(5.1)605

606

where Un := 3B2

n2 +
3ε22(n,δ)

µ + d
n and Mt :=

∫ t
0 e

αs⟨θs − θ∗, dBs⟩. By construction, the latter607

term is a martingale.608

The proof of the bound (5.1) is given later in this section; we take it as given for the609

moment, and use it to prove the theorem. In order to bound the moments of martingale Mt,610

for any p ≥ 4, we invoke the Burkholder–Davis–Gundy inequality (e.g., §4.4 of the book [36])611

to find that612

613

E

[
sup

0≤t≤T
|Mt|

p
2

]
≤ (pC)

p
4E

[
[M ]

p
4
T

]
= (pC)

p
4E

(∫ T

0
e2αs ∥θs − θ∗∥22 ds

) p
4

614

≤ (pC)
p
4E

(
sup

0≤t≤T
eαt ∥θt − θ∗∥22

∫ T

0
eαsds

) p
4

≤
(
pCeαT

α

) p
4

E

(
sup

0≤t≤T
eαt ∥θs − θ∗∥22

) p
4

,615

616

This manuscript is for review purposes only.



DIFFUSION FOR POSTERIOR CONTRACTION 17

where C is a universal constant. Therefore, we arrive at the bound617

E

[(
sup

0≤t≤T
eαt ∥θt − θ∗∥2

)p]
≤ E

(
2√
n
Mt

) p
2

+

(
Un

(eαT − 1)

α

) p
2

618

≤
(
Un

eαT

α

) p
2

+

(
pCeαT

αn

) p
4

E

(
sup

0≤s≤T
eαs ∥θs − θ∗∥22

) p
4

.619

620

For the right hand side of the above inequality, we can relate it to the left hand side by using621

Young’s inequality, which is given by622

(
pCeαT

αn

) p
4

E

(
sup

0≤s≤T
eαs ∥θs − θ∗∥22

) p
4

≤ 1

2

(
pCeαT

αn

) p
2

+
1

2
E

(
sup

0≤s≤T
eαs ∥θs − θ∗∥22

) p
2

.623

624

Putting the above results together, and let α = µ
2 , we find that625

(E [∥θT − θ∗∥p2])
1
p ≤ e−αT

(
E sup

0≤t≤T

(
eαt ∥θt − θ∗∥p2

)
) 1

p

≤ C ′
(√

Un
µ

+

√
2p

nµ

)
,626

627

for universal constant C ′ > 0. Therefore, the diffusion process (2.3) satisfies the bound628

sup
t≥0

(E [∥θt − θ∗∥p2])
1
p ≤ c

(√
d

µn
+

B

µn
+
ε2(n, δ)

µ
+

√
p

nµ

)
for any p ≥ 1.629

630

Combining the above inequality with the inequality (5.3) yields the conclusion of the theorem.631

5.1.1. Proof of claim (5.1). For the given choice α > 0, an application of Itô’s formula632

yields the decomposition633

1

2
eαt ∥θt − θ∗∥22 =− 1

2

∫ t

0
⟨θ∗ − θs, ∇Fn(θs)eαs⟩ds+

1

2n

∫ t

0
⟨θs − θ∗, ∇ log π(θs)e

αs⟩ds634

+
d

2n

∫ t

0
eαsds+

1√
n

∫ t

0
eαs⟨θs − θ∗, dBs⟩+

1

2

∫ t

0
αeαs ∥θs − θ∗∥22 ds635

=J1 + J2 + J3 + J4 + J5.(5.2)636637

We begin by bounding the term J1 in equation (5.2). Based on Assumption (S.2) regarding638

the perturbation error between Fn and F and the strong convexity of F , we have639

J1 = −1

2

∫ t

0
⟨θ∗ − θs, ∇Fn(θs)eαs⟩ds640

≤− 1

2

∫ t

0
⟨θ∗ − θs, ∇F (θs)eαs⟩ds+

1

2

∫ t

0
∥θs − θ∗∥2 ∥∇F (θs)−∇Fn(θs)∥2 eαsds641

≤− 1

2

∫ t

0
µ ∥θs − θ∗∥22 eαsds+

1

2

∫ t

0
∥θs − θ∗∥2 (ε1(n, δ) ∥θs − θ∗∥2 + ε2(n, δ))e

αsds642

≤− 1

2

∫ t

0
µ ∥θs − θ∗∥22 eαsds+

1

2

∫ t

0
∥θs − θ∗∥22 (ε1(n, δ) + µ/3)eαsds+

3ε22(n, δ)

2µ

∫ t

0
eαsds.643

644
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The second term J2 involving prior π can be controlled in the following way:645

646

J2 =
1

2n

∫ t

0
⟨θs − θ∗, ∇ log π(θs)e

αs⟩ds ≤ 1

2n

∫ t

0
B ∥θs − θ∗∥2 eαsds647

≤
∫ t

0

µ

6
∥θs − θ∗∥22 eαsds+

3B2

n2µ

∫ t

0
eαsds.648

649

For the third term J3, a direct calculation leads to650

J3 =
d(eαt − 1)

2αn
.651

652

Moving to the fourth term J4 =Mt/
√
n, it is a martingale (since Mt is a martingale). Putting653

the above results together and noting that α = 1
2µ− ε1(n, δ) >

µ
6 , we obtain the bound654

1

2
eαt ∥θt − θ∗∥22 ≤

1√
n
Mt + Un

(eαt − 1)

2α
.655

656

Putting together the pieces yields the claim (5.1).657

5.2. Proof of Theorem 3.2. As in the proof of Theorem 3.1, we omit the conditioning on658

Fn := σ(Xn
1 ). For any p ≥ 2, we define the functions on the positive real line (0,∞) as659

ν(p)(r) := ψ
(
r

1
p−1

)
r

p−2
p−1 , and τ(p)

(
rp−1ζ(r)

)
:= rp−2ψ(r).660

661

Note that τ(p) is defined implicitly; let us verify that this definition is meaningful. By662

Assumption (W.2), the function r 7→ rp−1ζ(r) is a strictly increasing and surjective, mapping663

from [0,+∞) to [0,+∞). Therefore, it is invertible, which ensures that the function τ(p) is664

well-defined.665

Now we claim that for any p ≥ 2, the functions ν(p) and τ(p) are convex and strictly666

increasing, and that furthermore, the expectation E [∥θt − θ∗∥p2] is upper bounded by the667

integral668

p

2

∫ t

0

(
−Rp(s) + ε(n, δ)τ−1

(p) (Rp(s)) +
B

n
ν−1
(p)(Rp(s)) +

p− 1 + d

n
ν−1
(p)(Rp(s))

p−2
p−1

)
ds,(5.3)669

670

where Rp(s) := E

[
∥θs − θ∗∥p−2

2 ψ(∥θs − θ∗∥2)
]
.671

Taking the above claims as given for the moment, let us now complete the proof of the672

theorem. Since for each finite q ≥ 1, the process (θt : t ≥ 0) converges in Lq norm, the limit673

limt→+∞Rp(t) exists. Since the functions τ(p) and ν(p) are convex and strictly increasing, their674

inverse functions are concave. Moreover, simple calculation leads to675

∇r

(
ν−1
(p)(r)

p−2
p−1

)
=
p− 2

p− 1
·
ν−1
(p)(r)

− 1
p−1

ν ′(p)(ν
−1
(p)(r))

.(5.4)676

677

Since ν(p) is convex and increasing, the numerator is a decreasing positive function of r.678

Additionally, the denominator is an increasing positive function of r. Therefore, the derivative679
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in equation (5.4) is a decreasing function of r, and the function r 7→ ν−1
(p)(r)

p−2
p−1 is concave.680

Define the function681

φ(r) := −r + ε(n, δ)τ−1
(p) (r) +

B

n
ν−1
(p)(r) +

p− 1 + d

n
ν−1
(p)(r)

p−2
p−1 ,682

683

and observe that φ is concave and φ(0) = 0. Let r∗ be the smallest positive solution to the684

equation685

r = ε(n, δ)τ−1
(p) (r) +

B

n
ν−1
(p)(r) +

p− 1 + d

n
ν−1
(p)(r)

p−2
p−1 .686

687

We then have φ(r) < 0 for r > r∗ and φ(r) > 0 for r ∈ (0, r∗). By Lemma C.1, we have688

limt→+∞Rp(t) ≤ r∗.689

Since ν(p) is a convex and strictly increasing function, Jensen’s inequality implies that690

Rp(t) = E

(
∥θt − θ∗∥p−2

2 ψ(∥θt − θ∗∥2)
)
≥ ν(p)

(
E ∥θt − θ∗∥p−1

2

)
.(5.5)691

692

Therefore, if we define z∗ := limt→+∞
(
E ∥θt − θ∗∥p−1

2

) 1
p−1

, we have zp−1
∗ ≤ ν−1

(p)(r∗). Hence,693

we arrive at the following inequality694

zp−2
∗ ψ(z∗) ≤ ε(n, δ)τ−1

(p)

(
ν(p)(z

p−1
∗ )

)
+
B

n
zp−1
∗ +

p− 1 + d

n
zp−2
∗695

= ε(n, δ)zp−1
∗ ζ(z∗) +

B

n
zp−1
∗ +

p− 1 + d

n
zp−2
∗ .696

697

As a consequence, we find that698

ψ(z∗) ≤ ε(n, δ)ζ(z∗)z∗ +
B + (p− 1)d

n
.699

700

In Appendix C.4 of the supplementary material [31], we prove the existence and uniqueness of701

the positive solution to the non-linear equation (3.1). Given this claim, replacing p by (p+ 1)702

and putting the above results together yields703

lim
t→+∞

(E (∥θt − θ∗∥p2))
1
p ≤ z∗p ,704

705

where z∗p is the unique positive solution to the following equation:706

ψ(z) = ε(n, δ)ζ(z)z +
B

n
z +

p+ d

n
.707

708

Combining the above inequality with the inequality (5.3) yields the conclusion of the theorem.709

710

We now return to prove our earlier claims about the behavior of the functions ν(p), τ(p), the711

moment bound (5.3), and the existence of unique positive solution to equation (3.1).712
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5.2.1. Structure of the function ν(p). Since ψ is a convex and strictly increasing function,713

by taking the second derivative, we find that714

ν ′′(p)(r) = ∇2
r

(
ψ
(
r

1
p−1

)
r

p−2
p−1

)
715

=
1

p− 1
r

1
p−1

−1
ψ′′
(
r

1
p−1

)
+

1

p− 1
r−1

(
ψ′
(
r

1
p−1

)
− r

− 1
p−1ψ

(
r

1
p−1

))
≥ 0716

717

for all r > 0. As a consequence, the function ν(p) is convex.718

5.2.2. Structure of the function τ(p). The proof is by calculating the second derivative of719

the function τ(p), and we make use of Assumption (W.3) on the functions ψ and ζ. Recall720

that τ(p)(r
p−1ζ(r)) = rp−2ψ(r) for any r > 0. Taking derivatives with respect to r on both721

sides, we find that722

[
(p− 1)rp−2ζ(r) + rp−1ζ ′(r)

]
τ ′(p)(r

p−1ζ(r)) = (p− 2)rp−3ψ(r) + rp−2ψ′(r).723
724

Under the substitution z = ζ(p)(r), we find that ∇zτ(p)(z) =
(p−2)ψ(r)+rψ′(r)
(p−1)rζ(r)+r2ζ′(r)

.725

Taking another derivative of the above term, we find that726

∇2
zτ(p)(z) =

(
ζ ′(p)(r)

)−1 g(r, p)

((p− 1)rζ(r) + r2ζ ′(r))2
,727

728

where we denote729

g(r, p) :=
[
(p− 1)rζ(r) + r2ζ ′(r)

]
·
[
(p− 1)ψ′(r) + rψ′′(r)

]
730

−
[
(p− 1)ζ(r) + (p+ 1)rζ ′(r) + r2ζ ′′(r)

]
·
[
(p− 2)ψ(r) + rψ′(r)

]
.731732

According to Assumption (W.3), the function τ(2) = ψ(2) ◦ ζ−1
(2) is convex. Therefore, we have733

g(r, 2) ≥ 0 for any r > 0. Simple algebra with first order derivative of function g with respect734

to parameter p leads to735

∇p (g(r, p)) =ζ(r) ·
[
(p− 1)rψ′(r) + r2ψ′′(r)− (p− 2)ψ(r)− rψ′(r)

]
736

−rζ ′(r)
[
(p− 2)ψ(r) + rψ′(r)

]
+ rψ′(r) ·

[
(p− 1)ζ(r) + rζ ′(r)

]
737

−ψ(r) ·
[
(p− 1)ζ(r) + (p+ 1)rζ ′(r) + r2ζ ′′(r)

]
738

=2(p− 2)
[
rψ′(r)ζ(r)− ψ(r)ζ(r)− rζ ′(r)ψ(r)

]
739

+
[
r2ζ(r)ψ′′(r) + rψ′(r)ζ(r)− 3ψ(r)ζ(r)− r2ψ(r)ζ ′′(r)

]
≥ 0740741

for all r > 0. Here the last inequality follows from Assumption (W.3). Therefore, the function742

g is increasing function in terms of p when p ≥ 2, so that g(r, p) ≥ g(r, 2) ≥ 0 for all r > 0.743

Given this inequality, we have d2

dz2
τ(p)(z) ≥ 0 for any z ≥ 0, p ≥ 2, i.e., the function τ(p)(z) is a744

convex function for z = ζ(p)(r).745
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5.2.3. Proof of claim (5.3). For any p ≥ 2, an application of Itô’s formula yields the746

bound ∥θt − θ∗∥p2 ≤
∑5

j=1 Tj , where747

T1 := −p
2

∫ t

0
⟨θ∗ − θs, ∇F (θs)⟩ ∥θs − θ∗∥p−2

2 ds,(5.6a)748

T2 :=
p

2

∫ t

0
⟨θ∗ − θs, ∇F (θs)−∇Fn(θs)⟩ ∥θs − θ∗∥p−2

2 ds(5.6b)749

T3 :=
p

2n

∫ t

0
⟨θs − θ∗, ∇ log π(θs)⟩ ∥θs − θ∗∥p−2

2 ds(5.6c)750

T4 := p

∫ t

0
∥θs − θ∗∥p−2

2 ⟨θs − θ∗, dBs⟩(5.6d)751

T5 :=
p(p− 1 + d)

2n

∫ t

0
∥θs − θ∗∥p−2

2 ds.(5.6e)752
753

We now upper bound the terms {Tj}5j=1 in terms of functionals of the quantity Rp. From the754

weak convexity of F guaranteed by Assumption W.1, we have755

E [T1] = −p
2
E

[∫ t

0
⟨θ∗ − θs, ∇F (θs)⟩ ∥θs − θ∗∥p−2

2 ds

]
≤ −p

2

∫ t

0
Rp(s)ds.(5.7a)756

757

Based on Assumption (W.2), we find that758

E [T2] =
p

2
E

[∫ t

0
⟨θ∗ − θs, ∇F (θs)−∇Fn(θs)⟩ ∥θs − θ∗∥p−2

2 ds

]
759

≤ p

2
ε(n, δ)

∫ t

0
E

[
∥θs − θ∗∥p−1

2 ζ(∥θs − θ∗∥2)
]
ds.760

761

Since the function τ(p) is convex, invoking Jensen’s inequality, we obtain the following inequali-762

ties:763
∫ t

0
E

[
∥θs − θ∗∥p−1

2 ζ (∥θs − θ∗∥2)
]
ds ≤

∫ t

0
τ−1
(p)E

[
τ(p)

(
∥θs − θ∗∥p−1

2 ζ(∥θs − θ∗∥2)
)]
ds764

=

∫ t

0
τ−1
(p) (Rp(s)) ds.765

766

In light of the above inequalities, we have767

E [T2] ≤
p

2
ε(n, δ)

∫ t

0
τ−1
(p) (Rp(s)) ds.(5.7b)768

769

Moving to T3 in equation (5.6c), given Assumption (A) which controls the growth of prior770

distribution π, its expectation is bounded as771

E [T3] =
p

2n
E

[∫ t

0
⟨θs − θ∗, ∇ log π(θs)⟩ ∥θs − θ∗∥p−2

2 ds

]
772

≤ pB

2n

∫ t

0
E

[
∥θs − θ∗∥p−1

2

]
ds.(5.7c)773

774
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By exploiting the bound (5.5) along with the fact that ν(p) is strictly increasing on [0,+∞),775

we find that776

∫ t

0
E

(
∥θs − θ∗∥p−1

2

)
ds ≤

∫ t

0
ν−1
(p) (Rp(s)) ds.(5.7d)777

778

Combining the inequalities (5.7c) and (5.7d), we have779

E [T3] ≤
pB

2n

∫ t

0
ν−1
(p) (Rp(s)) ds.(5.7e)780

781

Moving to the fourth term T4 from equation (5.6d), we have782

E [T4] = E

[∫ t

0
∥θs − θ∗∥p−2

2 ⟨θs − θ∗, dBs⟩
]
= 0,(5.7f)783

784

where we have used the martingale structure.785

For the last term T5, invoking Hölder’s inequality and the bound (5.5), we have the moment786

estimate:787

E

(
∥θs − θ∗∥p−2

2

)
≤
(
E

[
∥θs − θ∗∥p−1

2

]) p−2
p−1 ≤ ν−1

(p) (Rp(s))
p−2
p−1 .788

789

Consequently, the term T5 can be bounded in expectation as790

E [T5] ≤
p(p− 1 + d)

2n

∫ t

0
ν−1
(p) (Rp(s))

p−2
p−1 ds.(5.7g)791

792

Collecting the bounds on the expectations of the terms {Tj}5j=1 from equations (5.7a)-(5.7g),793

respectively, yields the claim (5.3).794

6. Discussion. In this paper, we described an approach for analyzing the posterior con-795

traction rates of parameters based on the diffusion processes. Our theory depends on two796

important features: the local growth of the population log-likelihood function F and stochastic797

perturbation bounds between the gradient of F and the gradient of its sample counterpart798

Fn. For strongly concave log-likelihood functions, we established posterior convergence rates799

for parameter estimation of the order (d/n)1/2, valid under appropriate conditions on the800

perturbation error between ∇Fn and ∇F and sharp sample size requirements. On the other801

hand, when the population log-likelihood function is weakly concave, our analysis shows that802

convergence rates are more delicate: they depend on an interaction between the degree of803

weak convexity, and the stochastic error bounds. In this setting, we proved that the posterior804

convergence rate of parameter is upper bounded by the unique positive solution of a non-linear805

equation determined by the previous interplay. Compared to the convergence rate of MLE,806

the bound contains an additional term capturing the diffusive behavior of the posterior dis-807

tribution. Finally, we demonstrated the utility of the diffusion process approach by deriving808

non-asymptotic forms of Bernstein–von Mises results for models with non-degenerate Fisher809

information.810

This manuscript is for review purposes only.



DIFFUSION FOR POSTERIOR CONTRACTION 23

Let us now discuss a few directions that arise naturally from our work. First, in the811

weakly convex setting, although we have established non-asymptotic posterior contraction812

bounds, the current results do not provide information on the shape of the asymptotic posterior813

distribution. For example, when F is locally strongly concave around θ∗, it is well-known from814

the Bernstein–von Mises theorem that the posterior distribution of parameter converges to a815

multivariate normal distribution centered at the maximum likelihood estimation (MLE) with816

the covariance matrix is given by 1/ (nI(θ∗)) (e.g., see the book [51], Chapter 10.2), where817

I(θ∗) denotes the Fisher information matrix at θ∗. When the F is only weakly concave, the818

Fisher information matrix I(θ∗) is degenerate, so that the posterior distribution can no longer819

be approximated by a multivariate Gaussian distribution. It is interesting to consider how the820

diffusion approach might provide insight into the shape of the posterior in this setting.821

Second, the contraction rates given in this paper can give information about the over-822

specification of the latent variable models, thereby having potential applications for model823

selection. As a concrete example, for the symmetric two-component Gaussian mixture model824

example discussed in Subsection 4.2, the posterior distribution concentrates around θ∗ = 0825

at a rate O
(
(d/n)1/4

)
in the over-specified case. On the other hand, for a non-degenerate826

mixture with symmetric modes at θ∗ and −θ∗ (with θ∗ ̸= 0), it concentrates at the usual rate827

O
(
(d/n)1/2

)
. Consequently, the degree of dispersion in the posterior serves as an indicator of828

over-specification. Furthermore, since our results are non-asymptotic, they also give guidance829

on how this procedure could be performed with finite sample size n. Finally, whereas this830

paper focused on posterior contraction for parametric models, we suspect that the diffusion831

process approach used here might also be fruitfully applied to non-parametric models.832
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SUPPLEMENTARY MATERIALS: A Diffusion Process Perspective on Posterior1

Contraction Rates for Parameters2

Wenlong Mou∗ , Nhat Ho† , Martin Wainwright‡ , Peter Bartlett‡ , and Michael Jordan‡3

4

This supplementary material is devoted to the proofs deferred from the main paper. In5

Appendix A, we present the proofs of non-asymptotic Bernstein–von Mises theorems using6

tools from diffusion process theory. The proofs of our main corollaries are given in Appendix B,7

whereas Appendix C is devoted to the proofs of auxiliary results.8

Appendix A. Proofs of non-asymptotic Bernstein–von Mises results. In this section,9

we collect the proofs of Theorem 3.5 and Proposition 3.4.10

A.1. Proof of Theorem 3.5. For any fixed T > 0, we define the sequence of potential11

functions Φt : R
d → R12

Φt(θ) := ⟨θ − θ̂(n)), H∗eH
∗(t−T )(θ − θ̂(n))⟩, for each t ∈ [0, T ].1314

Once again, we consider the diffusion process15

dθt = −∇Fn(θt)dt+
1

n
∇ log π(θt)dt+ dBt,16

17

with the initial condition θ0 = θ̂(n). Using Itô’s formula, for t ∈ [0, T ], we have18

Φt(θt) =

∫ t

0

∂Φs
∂s

(θs)ds−
∫ t

0
⟨∇Φs(θs), ∇Fn(θs)−

∇ log π(θs)

n
⟩ds19

+

√
2

n

∫ t

0
⟨∇Φs(θs), dBs⟩+

1

n

∫ t

0
∆Φs(θs)ds20

=

∫ t

0

(
H∗(θs − θ̂(n))−∇Fn(θs) +

∇ log π(θs)

n

)⊤

H∗eH
∗(s−T )(θs − θ̂(n))ds

︸ ︷︷ ︸
:=I1(t)

21

+

√
2

n

∫ t

0
(θs − θ̂(n))⊤H∗e(s−T )H

∗

dBs
︸ ︷︷ ︸

I2(t)

+
1

n

∫ t

0
Tr
(
H∗eH

∗(s−T )
)
ds

︸ ︷︷ ︸
I3(t)

.(A.1)22

23

Note that the matrices H∗ and e(s−T )H
∗
commute, so that we may write their product in an24

arbitrary order.25

Defining the linearization error26

∆s := (A+ ε
(2)
1 (n, δ))

(
∥θs − θ∗∥2 +

∥∥∥θ̂(n) − θ∗
∥∥∥
2

)
+ ε

(2)
2 (n, δ) +

L2

n
,27

28

∗Department of EECS, UC Berkeley.
†Department of Statistics and Data Science, UT Austin.
‡Department of EECS and Department of Statistics, UC Berkeley.

SM1

This manuscript is for review purposes only.



SM2 W. MOU, N. HO, M. J. WAINWRIGHT, P. L. BARTLETT, AND M. I. JORDAN

we claim that the following bounds hold for each t ∈ [0, T ]:29

I1(t) ≤ 2+log κ(H∗)
a sup

0≤s≤t
Φs(θs) + a

∫ t

0
∆2
s

(
∥θs − θ∗∥22 +

∥∥∥θ̂(n) − θ∗
∥∥∥
2

2

)
e−

λmin(H∗)

2
(s−T )ds,

(A.2a)

30

31
32

(
E sup

0≤t≤T
|I2(t)|p

)1/p

≤ c

√
p (1 + log κ(H∗))

n

(
E sup

0≤t≤T
Φt(θt)

p/2

)1/p

, and(A.2b)33

I3(t) ≤
d

n
.(A.2c)34

35

Here c > 0 is an universal constant. We prove all of these bounds in the subsections to follow.36

Taking these bounds as given for the moment, let us complete the proof of the theorem.37

By Jensen’s inequality, for an even integer p ≥ 2, the moments of the integral term in38

equation (A.2a) can be bounded as39

40

(A.3) E

(∫ T

0
∆2
s

(
∥θs − θ∗∥22 +

∥∥∥θ̂(n) − θ∗
∥∥∥
2

2

)
e−

λmin(H∗)

2
(s−T )ds

)p
41

≤
(

c

λmin(H∗)

)p−1

· E
∫ T

0
∆2p
s

(
∥θs − θ∗∥2p2 +

∥∥∥θ̂(n) − θ∗
∥∥∥
2p

2

)
e−

λmin(H∗)

2
(s−T )ds,42

43

for a universal constant c > 0.44

For any ω ∈ (0, 1), by taking supremum on both sides of the decomposition (A.1), combining45

with the bounds (A.2a) and (A.2c), and taking a = c2+log κ(H∗)
ω , we arrive at the inequality46

47

sup
0≤t≤T

Φt(θt) ≤ (1 + ω)

(
d

n
+ sup

0≤t≤T
I2(t)

)
48

+
c(2 + log κ(H∗))

ω

∫ T

0
∆2
t

(
∥θt − θ∗∥22 +

∥∥∥θ̂(n) − θ∗
∥∥∥
2

2

)
e−

λmin(H∗)

2
(t−T )dt.49

50

Taking p-th moment on both sides of the inequality, combining with the bounds (A.2b)51

and (A.3), and applying Minkowski’s inequality, we arrive at the bound52

53
(
E sup

0≤t≤T
Φt(θt)

p

)1/p

≤ (1 + ω)
d

n
+

√
cp(1 + log κ(H∗))

n
·
(
E sup

0≤t≤T
Φt(θt)

p

) 1
2p

54

+
c(2 + log κ(H∗))

ωλmin(H∗)

(
sup

0≤t≤T
E

[
∆2p
t

(
∥θt − θ∗∥2p2 +

∥∥∥θ̂(n) − θ∗
∥∥∥
2p

2

)])1/p

.55

56

Substituting with the definition of the last term, and applying Young’s inequality, we find that57

(
E sup

0≤t≤T
Φt(θt)

p

)1/p

≤ (1 + ω)
d

n
+ c

1 + log κ(H∗)

ω

(
p

n
+

Hn(p, δ)

λmin(H∗)

)
,58

59
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where the high-order term Hn(p, δ) is defined as60

Hn(p, δ) :=(A+ ε
(2)
1 (n, δ))2

(
EQ ∥θ − θ∗∥4p2

)1/p
61

+
∥∥∥θ̂(n) − θ∗

∥∥∥
2

2

(
ε
(2)
2 (n, δ)2 +

L2
2

n2
+ (A+ ε

(2)
1 (n, δ))2

∥∥∥θ̂(n) − θ∗
∥∥∥
2

2

)
.62

63

Putting together the pieces yields the conclusion of the theorem.64

A.1.1. Proof of claim (A.2a). We first bound the term I1(t). Noting the defining identity65

∇Fn(θ̂(n)) + 1
n∇ log π(θ̂(n)) = 0, we have the following bound:66

∥∥∥H∗(θs − θ̂(n))−∇Fn(θs) +∇ log π(θs)/n
∥∥∥
2

67

=

∥∥∥∥
∫ 1

0

(
H∗ −∇2Fn

(
γθs + (1− γ)θ̂(n)

)
+∇2 log π

(
γθs + (1− γ)θ̂(n)

)
/n
)
(θs − θ̂(n))dγ

∥∥∥∥
2

68

≤
∫ 1

0
|||H∗ −∇2Fn

(
γθs + (1− γ)θ̂(n)

)
+∇2 log π

(
γθs + (1− γ)θ̂(n)

)
/n|||op ·

∥∥∥θs − θ̂(n)
∥∥∥
2
dγ.69

70

By Assumptions (BvM.1), (BvM.2), and (PS), for any θ ∈ Rd, we have the bound71

|||H∗ −∇2Fn(θ) +∇2 log π(θ)/n|||op72

≤ |||H∗ −∇2F (θ)|||op + |||∇2F (θ)−∇2Fn(θ)|||op + |||∇2 log π(θ)/n|||op73

≤ A ∥θ − θ∗∥2 + ε
(2)
1 (n, δ) ∥θ − θ∗∥2 + ε

(2)
2 (n, δ) +

L2

n
.74

75

Substituting into the bound for I1(t), for any a > 0, we have that76

I1(t) ≤
∫ t

0
|||(H∗)1/2eH

∗(s−t)/2|||op77

×
∥∥H∗ −∇2Fn(θs) +∇2 log π(θs)/n

∥∥
2

∥∥∥θs − θ̂(n)
∥∥∥
2

√
Φs(θs)ds78

≤ a−1 sup
0≤s≤t

Φs(θs) ·
∫ t

0
|||(H∗)1/2eH

∗(s−T )/4|||2opds79

+ a

∫ t

0
|||H∗ −∇2Fn(θs)

2 +∇2 log π(θs)/n|||2op ·
∥∥∥θs − θ̂(n)

∥∥∥
2

2
|||eH∗(s−T )/4|||2opds80

≤ 2 + log κ(H∗)

a
sup
0≤s≤t

Φs(θs)81

+ a

∫ t

0
∆2
s

(
∥θs − θ∗∥22 +

∥∥∥θ̂(n) − θ∗
∥∥∥
2

2

)
e−

λmin(H∗)

2
(s−T )ds.82

83

Therefore, claim (A.2a) follows.84
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A.1.2. Proof of claim (A.2b). Note that I2(t) is a martingale with respect to the Brownian85

filtration. Applying the Burkholder-Gundy-Davis inequality for an arbitrary p ≥ 2 yields86

(
E sup

0≤t≤T
|I2(t)|p

)1/p

≤ c

√
p

n

(
E

(∫ T

0

∥∥∥H∗e(t−T )H
∗

(θt − θ̂(n))
∥∥∥
2

2
dt

) p

2

)1/p

87

≤ C

√
p

n

(
E

(∫ T

0
|||(H∗)1/2e

t−T
2
H∗ |||2opΦt(θt)dt

) p

2

)1/p

88

≤ c

√
p

n

(
E sup

0≤t≤T
Φt(θt)

p/2

)1/p

·
√∫ T

0
|||(H∗)1/2e

t−T
2
H∗ |||2opdt.89

90

We now observe that91

|||(H∗)1/2e
t−T
2
H∗ |||2op = |||H∗e(t−T )H

∗ |||op = max
i∈[d]

(
λi(H

∗)e(t−T )λi(H
∗)
)
.92

93

Taking the time integral leads to the bound94

∫ T

0
|||(H∗)1/2e

t−T
2
H∗ |||2opdt ≤

∫ +∞

0
max
i∈[d]

(
λi(H

∗)e−tλi(H
∗)
)
dt95

≤
∫ +∞

0
max

λmin(H∗)≤λ≤λmax(H∗)

(
λe−tλ

)
dt.

︸ ︷︷ ︸
= :J

96

97

We now split the integral J into three parts, thereby obtaining98

J ≤
∫ λmax(H∗)−1

0
λmax(H

∗)e−tλmax(H∗)dt99

+

∫ λmin(H
∗)−1

λmax(H∗)−1

dt

et
+

∫ +∞

λmin(H∗)−1

λmin(H
∗)e−tλmin(H

∗)dt100

≤ 1 +
1

e
log

λmax(H
∗)

λmin(H∗)
.(A.4)101

102

Denote κ(M) := λmax(M)
λmin(M) for a positive definite matrix M . Collecting the above inequalities,103

we find that the term I2(t) is upper bounded as104

(
E sup

0≤t≤T
|I2(t)|p

)1/p

≤ c

√
p (1 + log κ(H∗))

n

(
E sup

0≤t≤T
Φt(θt)

p/2

)1/p

105

106

for a universal constant c > 0. This completes the proof of the claim (A.2b).107

A.1.3. Proof of claim (A.2c). Finally, the term I3(t) is straightforward to upper bound as108

I3(t) ≤
1

n
Tr

(
H∗

∫ T

0
eH

∗(s−T )ds

)
≤ 1

n
Tr

(
H∗

∫ +∞

0
e−sH

∗

ds

)
=
d

n
,109

110

which establishes the claim (A.2c).111
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A.2. Proof of Proposition 3.4. We introduce the shorthand µ := N
(
θ̂(n), (nH∗)−1

)
for112

the target density. Since H∗ ≻ 0, the Gaussian log-Sobolev inequality implies that113

DKL(Q(· | Xn
1 ) ∥ µ) ≤

1

nλmin(H∗)

∫

Rd

∥∇ logQ(θ | Xn
1 )−∇ logµ(θ)∥22 Q(dθ | Xn

1 ).(A.5)114
115

Since µ is a Gaussian density, we find that116

∇ log µ(θ) = −nH∗(θ − θ̂(n)).117118

For the posterior density Q(· | Xn
1 ), we note that119

∇ logQ(θ|Xn
1 ) = −n∇Fn(θ) +∇ log π(θ)120

=

∫ 1

0

(
−n∇2Fn(γθ + (1− γ)θ̂(n)) +∇2 log π(γθ + (1− γ)θ̂(n))

)
121

× (θ − θ̂(n))dγ.122123

Putting the above equations together yields124
125

∥∇ logQ(θ | Xn
1 )−∇ logµ(θ)∥2126

≤ n

∫ 1

0
|||∇2Fn(γθ + (1− γ)θ̂(n))−H∗ +∇2 log π(γθ + (1− γ)θ̂(n))/n|||op ·

∥∥∥θ − θ̂(n)
∥∥∥
2
dγ.127

128

By Assumptions (BvM.1), (BvM.2), and (PS), we have the bounds129

|||∇2Fn(γθ + (1− γ)θ̂(n)) +∇2 log π(γθ + (1− γ)θ̂(n))/n−H∗|||op130

≤ |||∇2F (γθ + (1− γ)θ̂(n))−H∗|||op131

+ |||∇2Fn(γθ + (1− γ)θ̂(n))−∇2Fn(γθ + (1− γ)θ̂(n))|||op +
L2

n
132

≤ A
∥∥∥γθ + (1− γ)θ̂(n) − θ∗

∥∥∥
2
+ ε

(2)
1 (n, δ)

∥∥∥θ − θ̂(n)
∥∥∥
2
+ ε

(2)
2 (n, δ) +

L2

n
.133

134

Substituting this bound into the bound (A.5) yields135

DKL(Q(· | Xn
1 ) ∥ µ) ≤

n

λmin(H∗)

(
A · EQ

[
∥θ − θ∗∥42 | Xn

1

]
+A

∥∥∥θ̂(n) − θ∗
∥∥∥
4

2

)
136

+
nε

(2)
1 (n, δ)

λmin(H∗)
EQ

[∥∥∥θ − θ̂(n)
∥∥∥
3

2
| Xn

1

]
137

+
(
ε
(2)
2 (n, δ) + L2/n

)
· E
[∥∥∥θ − θ̂(n)

∥∥∥
2

2
| Xn

1

]
.138

139

As a consequence, we obtain the conclusion of the proposition.140

Appendix B. Proofs of corollaries. In this appendix, we collect the proofs of several141

corollaries stated in the main text and Section 4. The crux of the proofs of these corollaries142

involves a verification of assumptions to invoke the respective theorems. Note that the values143

of universal constants may change from line to line.144
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B.1. Proof of Corollary 4.1. We begin by verifying claim (4.2a) about the structure145

of the negative population log-likelihood function FR and claim (4.2b) about the uniform146

perturbation error between ∇FR and ∇FRn .147

B.1.1. Proof of claim (4.2a). Following some algebra, we find that148

−FR(θ) = E

[
−Y log

(
1 + e−⟨X, θ⟩

)
− (1− Y ) log

(
1 + e⟨X, θ⟩

)]
149

= −E

[
1

1 + e−⟨X, θ∗⟩
log
(
1 + e−⟨X, θ⟩

)
+

1

1 + e⟨X, θ∗⟩
log
(
1 + e⟨X, θ⟩

)]
,150

151

where the above expectations are taken with respect to X ∼ N (0, σ2Id) and Y |X following152

probability distribution generated from logistic model (4.1). Taking the derivative of FR with153

respect to θ yields154

⟨∇FR(θ), θ∗ − θ⟩155

= E

[(
1 + e⟨X, θ⟩

1 + e⟨X, θ∗⟩
− 1 + e−⟨X, θ⟩

1 + e−⟨X, θ∗⟩

)
e−⟨X, θ⟩

(1 + e−⟨X, θ⟩)2
⟨X, θ − θ∗⟩

]
.156

157

By the mean value theorem, there exists ξ between 0 and ⟨X, θ − θ∗⟩ such that158

1 + e⟨X, θ⟩

1 + e⟨X, θ∗⟩
− 1 + e−⟨X, θ⟩

1 + e−⟨X, θ∗⟩
= ⟨X, θ − θ∗⟩

(
e⟨X, θ

∗⟩+ξ

1 + e⟨X, θ∗⟩
+

e−⟨X, θ∗⟩−ξ

1 + e−⟨X, θ∗⟩

)
.159

160

In light of the above equality, we arrive at the following inequalities:161

⟨∇FR(θ), θ∗ − θ⟩ ≥ E

[
inf

|ξ|∈[0,|⟨X, θ−θ∗⟩|]

(
e⟨X, θ

∗⟩+ξ

1 + e⟨X, θ∗⟩
+

e−⟨X, θ∗⟩−ξ

1 + e−⟨X, θ∗⟩

)
162

× e−⟨X, θ⟩

(1 + e−⟨X, θ⟩)2
|⟨X, θ − θ∗⟩|2

]
163

≥ E

[
1

2
e−|⟨X, θ−θ∗⟩| e−⟨X, θ⟩

(1 + e−⟨X, θ⟩)2
|⟨X, θ − θ∗⟩|2

]
164

≥ 1

8
E

[
e−|⟨X, θ−θ∗⟩|−|⟨X, θ⟩||⟨X, θ − θ∗⟩|2

]
165

≥ 1

8e4
E
[
1{|⟨X, θ⟩|≤2, |⟨X, θ−θ∗⟩|≤2}|⟨X, θ − θ∗⟩|2

]
.166

167

Since X ∼ N (0, Id), we have168

[
⟨X, θ⟩

⟨X, θ − θ∗⟩

]
∼ N

(
0,

[
∥θ∥22 ⟨θ, θ − θ∗⟩

⟨θ, θ − θ∗⟩ ∥θ − θ∗∥22

])
.169

170

Given that result, direct calculation leads to171

E
(
1{|⟨X, θ⟩|≤2,|⟨X, θ−θ∗⟩|≤2}|⟨X, θ − θ∗⟩|2

)
172

≥ c

(1 + ∥θ∥2)(1 + ∥θ − θ∗∥2)
∥θ − θ∗∥22 ,173

174
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for a universal constant c > 0. Collecting the above results, for all θ such that ∥θ − θ∗∥2 ≤ 1,175

we achieve that176

⟨∇FR(θ), θ∗ − θ⟩ ≥ c

(1 + ∥θ∥2)(1 + ∥θ − θ∗∥2)
∥θ − θ∗∥22177

≥ c
1

1 + ∥θ∗∥2
∥θ − θ∗∥22 .178

179

For θ with ∥θ − θ∗∥2 > 1, let θ̃ = θ∗ + θ−θ∗

∥θ−θ∗∥2
. Then, we find that180

⟨∇FR(θ), θ∗ − θ⟩ ≥ ⟨∇FR(θ̃), θ∗ − θ⟩ ≥ c

2(1 + ∥θ∗∥2)
∥θ − θ∗∥2 ,181

182

which yields the claim (4.2a).183

B.1.2. Proof of the bound (4.2b). In this appendix, we prove the uniform bound (4.2b)184

between the empirical and population likelihood gradients. It suffices to establish the following185

stronger result:186

Z := sup
θ∈Rd

∥∥∇FRn (θ)−∇FR(θ)
∥∥
2
≤ c

{√
d

n
+

√
log(1/δ)

n
+

log(1/δ)

n

}
,(B.1)187

188

with probability at least 1− δ for any n
logn ≥ c0d log(1/δ) where c0 is a universal constant.189

In order to prove the claim (B.1), we exploit a concentration inequality due to Adam-190

czak [SM1]; it gives tight tail bounds for supremum of unbounded empirical processes. Through-191

out our derivation, we use ∥X∥ψα
to denote the Orlicz ψα norm for a random variable X, for192

any α ∈ (0, 2]. Let us state a simplified version of a theorem due to Adamczak:193

Proposition B.1 (Theorem 4, [SM1], simplified version). Let (x, θ) 7→ f(θ;x) be a function194

with domain Θ×X , and suppose that there is a function F̄ : X → R such that |f(θ, x)| ≤ F̄ (x)195

for any θ ∈ Θ. Let X1, X2, · · · , Xn
i.i.d.∼ PX , and suppose that

∥∥F̄
∥∥
ψα

< +∞ for some α ≤ 1.196

Then the random variable Zn := 1
n supθ∈Θ |∑n

i=1 f(θ;Xi)− E[f(θ;X)]| satisfies the bound:197

P (Zn > 2E[Zn] + t) ≤ exp

(
− t2

2E[F̄ (X)2]

)
+ 3 exp

(
−
(

t

c
∥∥maxi∈[n] F̄ (Xi)

∥∥
ψα

)α)
,198

199

for a universal constant c > 0.200

In order to prove the claim (B.1), we begin by writing Z as the supremum of a stochastic201

process. Let Sd−1 denote the Euclidean sphere in Rd, and define the stochastic process202

Zu,θ :=

∣∣∣∣∣
1

n

n∑

i=1

fu,θ(Xi, Yi)− E[fu,θ(X,Y )]

∣∣∣∣∣ ,203

204

where fu,θ(x, y) =
y⟨x, u⟩ey⟨x, θ⟩
1 + ey⟨x, θ⟩

, indexed by vectors u ∈ Sd−1 and θ ∈ B(θ∗; r). The outer205

expectation in the above display is taken with respect to (X,Y ) drawn from the logistic206

model (4.1)207
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Observe that Z = sup
u∈Sd−1

sup
θ∈Rd

Zu,θ. Let {u1, . . . , uN} be a 1/8-covering of Sd−1 in the208

Euclidean norm; there exists such a set with N ≤ 17d elements. By a standard discretization209

argument (see Chapter 6, [SM5]), we have210

Z ≤ 2 max
j=1,...,N

sup
θ∈Rd

Zuj ,θ.211

212

Accordingly, the remainder of our argument focuses on bounding the random variable213

V := supθ∈Rd Zu,θ, where the vector u ∈ Sd−1 should be understood as arbitrary but fixed.214

For each u ∈ Sd−1 fixed, we note that F̄ (X,Y ) = |⟨X, u⟩| is an envelop function for the class215

(fu,θ(X,Y ))θ∈Rd . Additionally, by standard tail bounds for maximum of Gaussian random216

variables, we know that:217

∥∥∥∥max
1≤i≤n

F̄ (Xi, Yi)

∥∥∥∥
ψ1

≤
√
log n.218

219

Consequently, invoking Proposition B.1 yields that220

V ≤ 2E[V ] +

√
2 log(1/δ)

n
+
c log(1/δ)

n

√
log n(B.2)221

222

with probability at least 1− δ.223

Now define the symmetrized random variable224

V ′ := sup
θ∈Rd

∣∣∣∣∣
1

n

n∑

i=1

εifθ,u(Xi, Yi)

∣∣∣∣∣ .225

226

where {εi}ni=1 is an i.i.d. sequence of Rademacher variables. By standard symmetrization227

arguments, we have228

E [V ] ≤ 2E
[
V ′
]
.229230

We now bound the expectation of V ′, first over the Rademacher variables. Consider the231

function class232

G :=
{
gθ : (x, y) 7→ ⟨x, u⟩ϕθ(x, y) | θ ∈ Rd

}
.233

234

It is clear that the function class G has the envelope function Ḡ(x) := |⟨x, u⟩|. We claim that235

the L2-covering number of G can be bounded as236

N̄(t) := sup
Q

∣∣∣N
(
G, ∥·∥L2(Q) , t

∥∥Ḡ
∥∥
L2(Q)

)∣∣∣ ≤
(
1

t

)c(d+1)

for all t > 0,(B.3)237

238

where c > 0 is a universal constant.239

Let us take the claim (B.3) as given for the moment, and use it to bound the ex-240

pectation of V ′, first over the Rademacher variables. Define the empirical expectation241
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Pn(Ḡ
2) := 1

n

∑n
i=1⟨Xi, u⟩2. Invoking Dudley’s entropy integral bound (e.g., Theorem 5.22,242

[SM5]), we find that there are universal constants C,C ′ such that243

Eε[V
′] = Eε

[
sup
g∈G

∣∣∣∣∣
1

n

n∑

i=1

εig(Xi, Yi)

∣∣∣∣∣

]
≤ C

√
Pn(Ḡ2)

n

∫ 1

0

√
1 + log N̄(t)dt244

≤ C ′
√
Pn(Ḡ2)

√
d

n
.245

246

Up to this point, we have been conditioning on the observations {Xi}ni=1. Taking expectations247

over them as well yields248

Eε,Xn
1
[V ′] ≤ C ′

√
d

n
· EXn

1

[√
Pn(Ḡ2)

]
(i)

≤ C ′

√
d

n
·
√
EXn

1

[
Pn(Ḡ2)

] (ii)
= C ′

√
d

n
,(B.4)249

250

where step (i) follows from Jensen’s inequality; and step (ii) uses the fact that EXn
1
[Pn(Ḡ

2)] = 1.251

Putting together the bounds (B.2) and (B.4) yields the following bound with probability 1− δ:252

V ≤ c

√
d+ log δ−1

n
+ c

log δ−1

n

√
log n.253

254

This probability bound holds for each u ∈ Sd−1. By taking the union bound over the 1/8-255

covering set {u1, . . . , uN} of Sd−1 where N ≤ 17d and applying above bound with δ′ = δ/N ,256

we obtain the claim (B.1) for sample size satisfying n
logn ≥ cd log(1/δ).257

B.1.3. Proof of claim (B.3). We consider a fixed sequence (xi, yi, ti)
m
i=1 where yi ∈ {−1, 1},258

xi ∈ Rd and ti ∈ R for i ∈ [m]. Now, we suppose that for any binary sequence (zi)
m
i=1 ∈ {0, 1}m,259

there exists θ ∈ Rd such that260

zi = I [⟨Xi, u⟩ϕθ(Xi, Yi) ≥ ti] for all i ∈ [m].261262

Following some algebra, we find that263

yix
T
i θ − log

Yiti
⟨Xi, u⟩ − Yiti

{
≥ 0 zi = 1

< 0 zi = 0
.264

265

Consequently, the set {[yixi, log(Yiti/(⟨Xi, u⟩−Yiti))]}mi=1 of (d+1)-dimensional points can be266

shattered by linear separators. Therefore, we have m ≤ d+ 2, which leads to the VC subgraph267

dimension of G to be at most d+ 2 (e.g., see the book [SM4]). As a consequence, we obtain268

the conclusion of the claim (B.3).269

B.2. Proof of Corollary 4.2. We prove Corollary 4.2 by verifying the claims (4.5a)270

and (4.5b).271

B.2.1. Structure of FG. Direct algebra leads to the following equation272

⟨∇FG(θ), θ∗ − θ⟩ =
(
θ − E

[
X tanh

(
X⊤θ

)])⊤
(θ − θ∗)273

≥ ∥θ∥22 − ∥θ∥2
∥∥∥E
[
X tanh

(
X⊤θ

)]∥∥∥
2

(B.5)274
275
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where tanh(x) := exp(x)−exp(−x)
exp(x)+exp(−x) for all x ∈ R. From Theorem 2 in Dwivedi et al. [SM3], we276

have277

∥∥∥E
[
X tanh

(
X⊤θ

)]∥∥∥
2
≤


1− p+

p

1 +
∥θ∥22
2


 ∥θ∥2278

279

for all θ ∈ Rd where p := P (|Y | ≤ 1) + 1
2P (|Y | > 1) where Y ∼ N (0, 1). Plugging the above280

inequality into equation (B.5) leads to281

⟨∇FG(θ), θ∗ − θ⟩ ≥ p ∥θ∥42
2 + ∥θ∥22

≥
{
p
4 ∥θ∥

4
2 , for ∥θ∥2 ≤

√
2

p
2

(
∥θ∥22 − 1

)
, otherwise

.282

283

As a consequence, we achieve the conclusion of claim (4.5a).284

B.2.2. Perturbation error between ∇FG and ∇FGn . Direct calculation indicates the285

following equation:286

∇FGn (θ)−∇FG(θ) = 1

n

n∑

i=1

Xi tanh(X
⊤
i θ)− E

[
X tanh

(
X⊤θ

)]
.287

288

The outer expectation in the above display is taken with respect to X ∼ N (θ∗, σ2Id) where289

θ∗ = 0. Based on the proof argument of Lemma 1 from the paper [SM3], for each r > 0, we290

have the following concentration inequality291

P

(
sup

θ∈B(θ∗,r)

∥∥∥∥∥
1

n

n∑

i=1

Xi tanh(X
⊤
i θ)− E

[
X tanh

(
X⊤θ

)]∥∥∥∥∥
2

292

≤ cr

√
d+ log(1/δ)

n

)
≥ 1− δ,(B.6)293

294

for any δ > 0 as long as the sample size n ≥ c′d log(1/δ) where c and c′ are universal constants.295

For any M ∈ N+, by the concentration bound (B.6) and the union bound, we find that296

P

(
∀r ∈ [2−M , 1], sup

θ∈B(θ∗,r)

∥∥∇FGn (θ)− FG(θ)
∥∥
2

297

≤ c r

√
d+ log(M/δ)

n

)
≥ 1− δ.(B.7)298

299

On the other hand, based on the standard inequality |tanh(x)| ≤ |x| for all x ∈ R, we find300

that301

∥∥∇FGn (θ)−∇FG(θ)
∥∥
2
≤ 1

n

n∑

i=1

∥Xi∥2
∣∣∣tanh

(
X⊤
i θ
)∣∣∣+ E

[
∥X∥2

∣∣∣tanh
(
X⊤θ

)∣∣∣
]

302

≤ 1

n

n∑

i=1

∥Xi∥2
∣∣∣X⊤

i θ
∣∣∣+ E

[
∥X∥2

∣∣∣X⊤θ
∣∣∣
]

303

≤
(
1

n

n∑

i=1

∥Xi∥22 + E

[
∥X∥22

])
∥θ∥2 .304

305
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Therefore, we have
∥∥∇FGn (θ)−∇FG(θ)

∥∥
2
≤ 2d ∥θ∥2 log(1/δ) with probability 1 − δ. By306

choosing M1 := log(2nd), based on the previous bound, we obtain that307

P

(
∀r < 2−M1 , sup

θ∈B(θ∗,r)

∥∥∇FGn (θ)−∇FG(θ)
∥∥
2
≤ log(1/δ)

n

)
≥ 1− δ.(B.8)308

309

Furthermore, for vector θ ∈ Rd with large norm, by the concentration bound (B.6) combined310

with the union bound, for any M ′ ∈ N+, we find that311

P

(
∀r ∈ [1, 2M

′

], sup
θ∈B(θ∗,r)

∥∥∇FGn (θ)− FG(θ)
∥∥
2

312

≤ c r

√
d+ log(M ′/δ)

n

)
≥ 1− δ.313

314

When r in the above bound is too large, we can simply use the fact that tanh is a bounded315

function. We thus have the upper bound316

∥∥∇FGn (θ)−∇FG(θ))
∥∥
2
≤ E [∥X∥2] +

1

n

n∑

i=1

∥Xi∥2 ,317

318

for any θ. Given the above bound, by choosing M2 := log(2
√
n), we obtain that319

P

(
∀r > 2M2 , sup

θ∈B(θ∗,r)

∥∥∇FGn (θ)−∇FG(θ))
∥∥
2
≤ r

√
d+ log(1/δ)

n

)
320

≥ P

(
E [∥X∥2] +

1

n

n∑

i=1

∥Xi∥2 ≤ 2M2

√
d+ log(1/δ)

n

)
≥ 1− δ.(B.9)321

322

Putting the bounds (B.7), (B.8), and (B.9) together, for n ≥ cd log(1/δ), the following323

probability bound holds324

P

(
∀r > 0, sup

θ∈B(θ∗,r)

∥∥∇FGn (θ)−∇FG(θ))
∥∥
2

325

≤ c r

√
d+ log (log n/δ)

n
+

log(1/δ)

n

)
≥ 1− δ,326

327

which completes the proof of the claim (4.5b).328

Appendix C. Proofs of the remaining auxiliary results.329

In this appendix, we provide proofs of the remaining auxiliary results in the paper.330

C.1. Proof of Proposition 2.1. For any p ≥ 2, we define the quantity:331

Rp := sup
p≥0

(Eπt [∥X∥p2])
1/p ∨ (Eπ∗ [∥X∥p2])

1/p
332

333
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For any given value R̄ > 0, we note the following decomposition:334

|Eπt [∥X∥p2]− Eπ∗ [∥X∥p2]|335

≤
∫

B(0,R̄)
|πt − π∗| · ∥x∥p2 dx+

∫

B(0,R̄)C
πt(x) ∥x∥p2 dx+

∫

B(0,R̄)C
π∗(x) ∥x∥p2 dx336

≤ R̄p · dTV(πt, π
∗) + Eπt

[
∥X∥p2 1∥X∥2>R̄

]
+ Eπ∗

[
∥X∥p2 1∥X∥2>R̄

]
337

≤ R̄p · dTV(πt, π
∗) +

√
Eπt

[
∥X∥2p2

]√
πt
(
∥X∥2 > R̄

)
+

√
Eπ∗

[
∥X∥2p2

]√
π∗
(
∥X∥2 > R̄

)
338

≤ R̄p · dTV(πt, π
∗) + 2Rp2p ·R2/R̄.339

340

For any ε > 0, take R̄ := ε
2Rp

2pR2
, we have that:341

lim
t→+∞

|Eπt [∥X∥p2]− Eπ∗ [∥X∥p2]| ≤ ε,342
343

which proves the claim.344

C.2. A limit result. We begin with a lemma on the limiting behavior of a certain type of345

function. The lemma is used in the proof of Theorem 3.2 in Subsection 5.2.346

Lemma C.1. Let φ be a concave and continuous function on [0,+∞) with φ(0) = φ(c) = 0347

for some positive constant c > 0. Assume furthermore that φ(t) < 0 for all t ∈ (c,∞). Suppose348

that there exist two continuous functions f, g : [0,+∞) → [0,+∞) such that limt→+∞ g(t)349

exists and f(t) ≤
∫ t
0 φ(g(s))ds for all t ≥ 0. Under these conditions, we have limt→+∞ g(t) ≤ c.350

Proof. Define the limit A := limt→+∞ g(t), which exists according to the assumptions. We351

proceed via proof by contradiction. In particular, suppose that A > c. Based on the definition352

of A, for the positive constant ε = (A − c)/2 > 0, we can find a sufficiently large positive353

constant T such that g(t) > A− ε for any t ≥ T . Since the function φ is concave, with φ(c) = 0354

and φ(t) < 0 for t > c, we have that φ is non-increasing on [c,+∞), and therefore355

δ := φ(c+ ε) = − sup
s≥c+ε

φ(s) < 0.356

357

Therefore, for all t > T , we arrive at the following inequalities358

0 ≤ f(t) ≤
∫ T

0
φ(g(s))ds+

∫ t

T
φ(g(s))ds ≤

∫ T

0
φ(g(s))ds− δ(t− T ).359

360

By choosing t = 1 + T + δ−1
∫ T
0 φ(g(s))ds, the above inequality cannot hold. This yields the361

desired contradiction, which completes the proof.362

C.3. A tail bound based on truncation. We now state an upper deviation inequality363

based on a truncation argument. Consider a sequence of random variables {Yi}ni=1 satisfying364

the moment bounds365

E [|Yi|q] ≤ (aq)bq for all q = 1, 2, . . .(C.1)366367

where a, b are universal constants.368
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Lemma C.2. Given an i.i.d. sequence of zero-mean random variables {Yi}ni=1 satisfying the369

moment bounds (C.1), we have370

P

(
1

n

n∑

i=1

Yi ≥ (4a)b
√

log 4/δ

n
+
(
a log

n

δ

)b log 4/δ
n

)
≤ δ.371

372

Proof. The proof of the lemma is a direct combination of truncation argument and373

Bernstein’s inequality. In particular, for each i ∈ [n], define the truncated random variable374

Ỹi := YiI
[
|Yi| ≤ 3(a log n

δ )
b
]
. With this definition, we have375

P

(
(Yi)

n
i=1 ̸= (Ỹi)

n
i=1

)
= P

(
max
1≤i≤n

|Yi| > 3
(
a log

n

δ

)b)
376

≤ nP

(
|Yi| > 3

(
a log

n

δ

)b)
≤ δ

2
.377

378

Therefore, it is sufficient to study a concentration behavior of the quantity
∑n

i=1 Ỹi. Invoking379

Bernstein’s inequality [SM2], we obtain that380

P

(
1

n

n∑

i=1

Ỹi ≥ ε

)
≤ 2 exp

(
− nε2

2(2a)2b + 2
3ε · 3(a log n

δ )
b

)
.381

382

In order to make the RHS of the above inequality less than δ
2 , it suffices to set383

ε = (4a)b
√

log(4/δ)

n
+
(
a log

n

δ

)b log(4/δ)
n

.384
385

Collecting all of the above inequalities yields the claim.386

C.4. Unique positive solution to equation (3.1). We now establish that equation (3.1)387

has a unique positive solution under the stated assumptions. Define the function388

ϑ(z) := ψ(z)−
(
ε(n, δ)ζ(z)z +

Bz + d+ log(1/δ)

n

)
.389

390

Since ψ(0) = 0, we have ϑ(0) < 0. On the other hand, based on Assumption (W.4),391

lim infz→+∞ ϑ(z) > 0. Therefore, there exists a positive solution to the equation ϑ(z) = 0.392

Recall that ξ : R+ → R is an inverse function of the strictly increasing function z 7→ zζ(z).393

Therefore, we can write the function ϑ as follows:394

ϑ(z) = ϑ̃(r) := ψ(ξ(r))− ε(n, δ)r − Bξ(r) + d+ log(1/δ)

n
,395

396

where r = z · ζ(z). Given the convexity of function r 7→ ψ(ξ(r)) guaranteed by Assump-397

tion (W.3), the functions ϑ̃ and ϑ are convex. Putting the above results together, there exists398

a unique positive solution to equation (3.1).399
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