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A Diffusion Process Perspective on Posterior Contraction Rates for Parameters

Wenlong Mou*, Nhat Hof, Martin Wainwright?, Peter Bartlett’, and Michael Jordan$

Abstract. We analyze the posterior contraction rates of parameters in Bayesian models via the Langevin diffusion
process, in particular by controlling moments of the stochastic process and taking limits. Analogous
to the non-asymptotic analysis of statistical M-estimators and stochastic optimization algorithms, our
contraction rates depend on the structure of the population log-likelihood function, and stochastic
perturbation bounds between the population and sample log-likelihood functions. Convergence rates
are determined by a non-linear equation that relates the population-level structure to stochastic
perturbation terms, along with a term characterizing the diffusive behavior. Based on this technique,
we also prove non-asymptotic versions of a Bernstein—von Mises guarantee for the posterior. We
illustrate this general theory by deriving posterior convergence rates for various concrete examples.
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1. Introduction. Bayesian inference is one of the central pillars of statistics. In Bayesian
analysis, we first endow the parameter space with a prior distribution chosen by modelling
considerations, and then apply Bayes’ rule, combining the prior with the likelihood, so as to
form the posterior distribution. From a statistical perspective, this posterior is of fundamental
interest, and there are various questions associated with its behavior, including its consistency
as the sample size goes to infinity, and from a more refined point of view, its contraction rate
in various metrics.

The earliest work on posterior consistency dates back to the seminal work of Doob [9], who
exhibited conditions under which the posterior distribution is consistent for all parameters
apart from a set of zero measure. Subsequent work by Freedman [13, 14] provided examples
showing that this null set can be problematic for Bayesian consistency in non-parametric
settings. In order to address this issue, Schwartz [40] proposed a general framework for
establishing posterior consistency for both semiparametric and nonparametric models. Since
then, a number of researchers have isolated conditions that are useful for studying posterior
distributions [3, 54, 55].

Moving beyond posterior consistency, convergence rates for the posterior density function,
along with associated parameters of models, remains an active area of research. For posterior
densities, Ghosal et al. [16] gave a general testing framework for proving convergence rates for
both finite and infinite dimensional models; it has been used by various researchers to analyze
posterior densities for Dirichlet and nonparametric Beta mixtures [17, 18, 38, 41]. Other
work [4, 58, 57] established minimax optimal rates for regression functions in nonparametric
regression models. Related problems include adaptive rates for the density in nonparametric
Bayesian inference [8, 15|, Bayesian linear and non-linear inverse problems [33, 25], and
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posterior contraction rates of density under misspecified models [24]. Other popular general
frameworks for analyzing the density functions of posterior distributions include those of Shen
and Wasserman [42], and Walker et al. [56].

1.1. From frequentist to Bayesian analysis. The focus of this paper is on posterior
convergence rates for parameters—namely, how for parametric Bayesian models, the posterior
distribution assigns mass to certain regions of the parameter space. Our contributions can be
put into perspective by considering known results for M-estimators. In the world of frequentist
statistics, estimators based on maximizing empirically-defined objective functions—known as
M-estimators—play a central role. In the parametric setting, a generic M-estimator takes the
form

(1.1) 6, := argmax F,,(6) where F,,(6) := LS f(6; X5), with X, T Pfori=1,...,n,
0cO

while the parameters 6 range over some constraint set ©, and the real-valued function f
has domain © x X. Maximum-likelihood is the archetypal example, obtained when f is the
log-likelihood.

There is now a rich and well-developed theory—one which exploits ideas from both
optimization theory and empirical process theory—for deriving sharp non-asymptotic bounds
on the difference between the estimate 6, and the maximizer 8* of the population-level
objective (e.g., see the books [52, 49, 53]). This theory leverages properties of the population-
level objective F'(f) := E[f(#, X)] where the expectation is taken with respect to X ~ P. At a
high level, there are two key steps in the analysis of an M-estimator: exploiting the structure
of F', and linking the behavior of the empirical objective F;, to the population objective F. In
the simplest setting, the population objective is strongly concave around its unique maximum
0*. More generally, when F' is differentiable, one can consider a condition of the following type

(1.22) —(VF(0), 0 —0%) = ([0 — 07][5),

assumed to hold uniformly for all € in a local neighborhood of 8*. Here 1 is an increasing
function on the positive real-line, with ¥ (t) = %t2 being the one obtained for a p-strongly
concave function. The second step is to relate the empirical and population objective, for
instance by establishing a uniform bound on their gradients—say

(1.2b) IVEL(0) = VEO)lly < <10 = 07[l5)en,

where the function ( is again defined on the positive real line, and €, measures the magnitude
of the noise.

When the functions F' and F), satisfy bounds of the form (1.2a) and (1.2b), it can be shown
that the estimate 5,1 satisfies a bound of the form Hé\n — 0*||2 = 7y, where r,, > 0 is the largest
positive solution to the inequality'

(1.3) P(r) < end(r).

!This solution exists and is unique under mild regularity conditions on the pair (¥, Q).

This manuscript is for review purposes only.



7T
78
79

80

82

DIFFUSION FOR POSTERIOR CONTRACTION 3

This framework is very convenient to use, since optimization theory and empirical process
theory give us various tools for establishing the local growth condition (1.2a) and the stochastic
perturbation bound (1.2b).

By using this framework with care, one can often obtain sharp results in terms of problem
dimension d, in both the rate itself and sample size lower bound needed to achieve such rates.
Moreover, the local growth condition (1.2a) is relatively flexible; for instance, it allows for models
in which the Fisher information matrix is singular (so that the function v is not quadratic).
There are many different instantiations of this general approach in past work, including various
methods or establishing growth conditions and empirical process bounds [44, 34], analysis
of iterative optimization algorithm [2, 12, 28, 21], as well as regularized and constrained
M-estimators [27, 6].

1.2. Our contributions. Moving back to the Bayesian setup, it is natural to seek to a
similarly flexible and user-friendly method for establishing finite-sample results for posterior
contraction. The main contribution of this paper is to do so by using the Langevin diffusion
process—a stochastic differential equation that can encode the posterior distribution—as a
lens of analysis.

There are natural parallels between our mode of analysis, and deterministic analyses of
optimization algorithms via differential equations [45, 43]. To provide such intuition, recall the
M-estimator defined by the objective function (1.1). Under the given conditions, its optimum
0* can be characterized as the limiting point of an ordinary differential equation known as the
gradient flow, and the rate (1.3) via the gradient flow dynamics for population and empirical
loss functions, respectively. Now consider the analogous approach for studying not the M-
estimator, but rather (in the Bayesian set-up) the posterior distribution. It is well-known [37]
that under mild regularity conditions, the posterior distribution can be represented as the
stationary distribution of a stochastic differential equation known as the Langevin diffusion.
Consequently, just as information about the M-estimator can be recovered by studying the
gradient flow, we can recover information about the posterior distribution by studying the
Langevin diffusion. In particular, we do so by leveraging stochastic calculus so as to control
the moments of this diffusion process. At a high-level, our main results involving showing
that, under assumptions of the form (1.2), the posterior convergence rate is governed by the
inequality 1 (r) < e,((r) + %. By comparison to inequality (1.3), relevant for M-estimation, we
see that this inequality includes an additional % term: it characterizes the diffusive behavior
(with dimension d and sample size n) induced from sampling from the Gibbs measure e~ as
opposed to taking its maximum.

With this overview in place, we now summarize the different classes of contributions that
are made in this paper:

Posterior contraction under one-point strong convexity. We begin with the simplest setting,
in which the population log-likelihood function is strongly concave in a global sense. Under
certain regularity conditions,” we prove that the posterior contraction rate around the true
parameter is (d/ n)l/ 2. Our technique allows us to specify precise non-asymptotic conditions
on the sample size and other model properties under which a guarantee of this type holds. In

?Briefly, we require the prior distribution to be sufficiently smooth and the perturbation error between the
population and empirical log-likelihood function to be well-controlled.
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many practical examples, the results yield sharp dependence on the problem dimension.

Posterior contraction under weak concavity. We then relax our assumption from strongly
concave to weakly concave, and prove related guarantees. Our results allow the Fisher
information matrix to be degenerate, in which case the n—1/2 convergence rate is not possible,
and the contraction rate is governed by the interplay of a local growth assumption and local
empirical process bounds. We illustrate these general results for two concrete classes of models:
over-specified Bayesian location Gaussian mixture models and Bayesian logistic regression
models.

Non-asymptotic Bernstein-von Mises (BvM) results. Our final contribution is to establish
two non-asymptotic BvM results for models with non-degenerate Fisher information. We
first derive a non-asymptotic upper bound on the Kullback—Leibler (KL) divergence between
the posterior distribution and the limiting Gaussian distribution. Second, we prove a non-
asymptotic contraction bounds for the posterior distribution that adapts to the geometry
of Fisher information. The bound almost matches the tail bounds satisfied by the limiting
Gaussian law.

The remainder of the paper is organized as follows. In Section 2, we set up the basic frame-
work for Bayesian models and introduce a diffusion process that admits posterior distribution
as its stationary distribution. Section 3 presents the main results whose proofs are in Section 5.
Section 4 is devoted to implications to concrete examples. We conclude our work with a
discussion in Section 6 while some technical proofs are in the supplementary material [31].

Notation. In the paper, the expression a, =~ b, will be used to denote a, > cb, for some
positive universal constant ¢ that does not change with n. Additionally, we write a,, =< b, if
both a,, =~ b, and a, = b, hold. For any n € N, we denote [n] = {1,2,...,n}. The notation
S stands for the unit sphere, namely, the set of vectors u € R? such that |jul, = 1. Given a
vector # € R? and a scalar r > 0, we use B(6,7) to denote the closed ball centered at 6 with
radius r. For any subset © of R?, » > 1, and € > 0, we denote N(g, O, || - ||,) the covering
number of © under || - ||, norm, namely, the minimum number of e-balls under | - ||, norm to
cover the entire set ©. Given a positive-definite matrix M > 0, we use Amax (M) and Apin (M) to
denote its largest and smallest eigenvalue, respectively, and we use k(M) := Amax(M)/Amin (M)
to denote its condition number. Finally, for any z,y € R, we denote z V y = max{z,y}
and z Ay = min{z,y}. Given a pair of probability distributions P and @, such that P is
absolutely continuous with respect to Q. The Kullback—Leibler (KL) divergence is defined as

Dxr(P || Q) :=Ep[log %].

2. Background and problem formulation. This section is devoted to background material
along with formulation of the problems studied in this paper. We first set up the problem of
studying convergence rates for posterior distributions over parameters in Subsection 2.1, and
provide background on its representation as the stationary distribution of a Langevin diffusion
process in Subsection 2.2. Finally, we define the population likelihood function, and introduce
various smoothness conditions in Subsection 2.3.

2.1. Posterior contraction rates for parameters. Consider a parametric family of distri-
butions Pg = {Fy | § € ©}. Throughout the paper, we assume that each distribution Py has
density pp with respect to the Lebesgue measure. Let X7 := (X1,...,X,) be a sequence of
random variables drawn i.i.d. from an underlying distribution P. In the well-specified case,
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DIFFUSION FOR POSTERIOR CONTRACTION 5

we have that P = Py« € Pg for some 0* € ©. However, it is important to note throughout
our paper, the ground truth distribution P does not have to lie in the parametric family Pg.
Instead, the posterior contraction results around the parameter 6* hold as long as certain
geometric conditions around #* are satisfied. These conditions are typically achieved by the
parameter 6* such that P is the best approximation to P within the family. See Section 3 for
a concrete discussion about these conditions.

Given a prior m over the parameter space, we define the log-likelihood

n
(2.1) F,(0):= %Zlogpg(Xi), along with the posterior Q (6| X7') := %.
i=1
As the sample size n increases, we expect that the posterior distribution will concentrate
more of its mass over increasingly smaller neighborhoods of the true parameter 6*. Posterior
contraction rates allow us to study how quickly this concentration of mass takes place. In
particular, for a given norm, we study the posterior mass of a ball of the form [|§ —6*|| < p for a
suitably chosen radius p > 0. For a given 6 € (0,1), our goal is to prove statements of the form
Q|6 — 6*| = p(n,d,8) | XT) < &, with probability at least 1 — § over the randomly drawn
data X7'. Our interest is in the scaling of the radius p(n,d, ) as a function of sample size n,
problem dimension d, and the error tolerance 9, as well as other problem-specific parameters.

2.2. From diffusion processes to the posterior distribution. The analysis of this paper
relies on a well-known connection between the posterior distribution and a particular stochastic
differential equation (SDE) known as the Langevin diffusion. For a parameter § > 0, the
Langevin diffusion can be written as

(2.2) dby = —5VU (6;)dt + 5 dBy,

where (By,t > 0) is a standard d-dimensional Brownian motion [36], and U : RY — R is known
as the potential function. Suppose that we impose the following regularity conditions on the
potential: (a) its gradient VU is locally Lipschitz, and (b) its gradient satisfies the inequality
(VU(0), 0) > c1||0]|5 — ca for any @ € R?, for some strictly positive constants c1,c2. Under
these conditions, by known results on general Langevin diffusions [1], the solution to the
Langevin diffusion (2.2) exists and is unique in the strong sense. Furthermore, the density of
6, converges in L. to the stationary distribution with density proportional to e V.

In the context of Bayesian inference, we can apply this argument to the potential function
Un(0) := —F,(0) — n~!log7(#) and B = n. Doing so will require us to verify that U, satisfies
the requisite regularity conditions. Assuming this validity, we are guaranteed that the posterior
distribution Q(6 | X7) is the stationary distribution of the SDE

2.3 do, = AV E,(0,)dt + -V log 7(6;)dt + -=dBy,
2 2n vn

with initial condition 8y = §*. Moreover, the density of ; converges in L.? to the posterior
density.

It should be noted that this SDE-based representation of the posterior underlies various
algorithms for drawing samples from the posterior distribution; we refer the reader to the

This manuscript is for review purposes only.
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classical literature [47, 48] and the recent progress [7, 10, 11] for some results in this direction.
In this paper, we exploit this SDE-based representation for statistical analysis (as opposed to
efficient computation). In particular, by characterizing the behavior of the process (6;,t > 0)
as a function of time, we can obtain bounds on the posterior distribution by taking limits. The
following proposition guarantees the convergence of the moments based on a uniform-in-time
moment upper bound and a convergence in total variation distance.

Proposition 2.1. Consider a sequence of distributions (m;);>0 on R? such that dpy (m, ) —
0, and suppose that supysq Eqx, [[| X 5] < 400 and Ex= [[| X||5] < 400 for any integer p > 2. We
then have im_Ey, [|X]5] = Er- [|X 3]
— 400

See Appendix C.1 in our supplementary material [31] for the proof of this proposition.

Given this limiting behavior, we can establish posterior contraction rates for the parameters
by controlling the moments of the diffusion process {6;}+>0. The main theoretical results of
this paper are obtained by following this general roadmap.

2.3. From empirical to population likelihood. Before proceeding to our main results, let
us introduce some additional definitions and conditions. A useful notion for our analysis is
the population log-likelihood F'. It corresponds to the limit of log-likelihood function F},, as
previously defined in equation (2.1), as the sample size n goes to infinity—viz.

(2.4) F(0) = E [log pg(X)],

where the expectation is taken with respect to X ~ Py+. Throughout the paper, we impose
the following smoothness conditions on the log prior density log:
(A) There exists a non-negative constant B > 0 such that

(Vlogn(8), 0 —6%) < B|6— 6%, for all 6 € R

Although the constant B in Assumption (A) can depend on 6*, we suppress this dependence
so as to keep the notation streamlined. When the function log 7 is globally Lipschitz (so that
|V 1og m(0)]|2 is uniformly bounded), Assumption (A) is automatically satisfied. But the one-
sided nature of Assumption (A) makes it flexible and allows many practical prior distributions.
For example, given scalars , 3 > 0, for the prior distribution 7(6) oc exp(—8~1||0]|5), we have

(Viogm(6), 6~ %) = 5 0ll3™ {67 0 %) — o "] |

_ *[|a—1 * * *
=o otherwise,

so that Assumption (A) is satisfied by B = 20‘*2% ||9*||g_1.

3. Main results. We now turn to our main results. In Subsection 3.1, we present a result
( Theorem 3.1) that establishes the posterior convergence under strong concavity. Subsection 3.2
answers the same question when the population log-likelihood is only weakly concave; see
the statement of Theorem 3.2. Finally, in Subsection 3.3, we pursue a more fine-grained
direction by establishing the non-asymptotic Bernstein—von Mises theorems (see Proposition 3.4
and Theorem 3.5)

This manuscript is for review purposes only.
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3.1. Posterior contraction under strong concavity. We begin with results under strong
concavity conditions. For this part, the following assumptions underlie our analysis:
(S.1) There exists a scalar > 0 such that

—(VF(8), 6" —0) > u||6 — 6%||3 for any 6 € RY.

(S.2) There exist non-negative functions €; and €3 that map from N x (0, 1] to R such that
for any radius » > 0 and any 0 € (0,1), we have

sup |[|VF,(0) — VF(0)|, <ei(n,d)r + e2(n,0) with prob. at least 1 — 4.
0cB(0*,7)

Assumption (S.1) is a standard strong concavity condition of function F' around 6*, whereas
Assumption (S.2) provides uniform control on the gradients of the population and sample
log-likelihoods. It is important to note that these assumptions, along with other assumptions to
follow, do not require the data-generating distribution P to belong to the specified parametric
class. Indeed, the results throughout this paper apply to both well-specified and mis-specified
models. In the latter case, the parameter 8* is typically the KL-projection of the true model,
i.e., 0* € arg mingco DKL<P H ]Pg).

Given the above assumptions, we are ready to state our first result regarding the posterior
convergence rate of parameters for a strongly concave population log-likelihood:

Theorem 3.1. Suppose that Assumptions (A), (S.1), and (S.2) hold. Then there is a
universal constant ¢ such that for any § € (0,1) and any sample size n for which e1(n,0) < &,

we have
Q16— 0%l > e\ + 2 4 209) o, foall) | x7) < 5

with probability 1 — 0, taken with respect to the random observations X7'.

See Subsection 5.1 for the proof of Theorem 3.1.

This result guarantees posterior convergence at the rate (d/n)"/? when the log-likelihood
is strongly concave. To be clear, such rate of posterior contraction for the parameters can be
derived from the asymptotic behavior of the posterior distribution via the classical Bernstein—
von Mises theorem. However, the guarantee in Theorem 3.1 is non-asymptotic, and provides
explicit dependence of the rate on other model parameters, including B and u, both of which
might vary as a function of #*. At the moment, we do not know whether the dependence of
these parameters is optimal. This guarantee is valid as long as the error term £1(n,d) is less
than an absolute constant; such a bound typically holds as long as n 2 d. In Theorem 3.5
to follow, we also provide near-optimal non-asymptotic contraction bounds on the posterior
distribution that nearly match the exact shape of the posterior distribution.

Although our set-up is focused on simple sampling models, it should be noted that our
method is sufficiently flexible so as to accommodate certain non-i.i.d. forms of sampling, along
with mis-specified models. After the first version was posted, Mazumdar et al. [29] used a
variant of this result to study the posterior contraction for Thompson sampling in contextual
bandits. In their problem, the data are adaptively collected instead of being i.i.d., and the
empirical process bound (S.2) can be verified using martingale concentration inequalities.

This manuscript is for review purposes only.
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While this paper focuses on the contraction of posterior distribution itself, it is worth
mentioning that the proof techniques of Theorem 3.1 can be extended to study the contraction
behavior of discretized Langevin diffusion. In particular, by expanding the discrete-time
evolution of the iterates following Subsection 5.1, we can derive recursive relations on the
moment bounds for the distance between iterates and 6* using Assumptions (S.1) and (S.2).
The solution to such recursion will lead to the rates in Theorem 3.1. This analysis tool does
not depend on the ergodicity of the discretized diffusion. We defer a detailed discrete-time
analysis to future work.

3.2. Posterior contraction under weak concavity. Theorem 3.1 requires global strong
concavity, which is relatively strong. In this section, we relax this assumption in two ways:
we relax the growth condition locally around 6* so as to allow for weak concavity, and the
global behavior need not coincide with this local behavior. Weakly concave log-likelihoods
arise for singular problems, for which the Fisher information matrix at the true parameter 6*
is rank-degenerate. Examples of such singular problems include Bayesian non-linear regression
models with certain choices of link functions [30], as well as over-specified mixture models [39],
in which the fitted mixture model has more components than the true mixture distribution.
The mismatch between local and global concavity conditions exists not only in such models,
but also in non-singular problems such as Bayesian logistic regression. We discuss implications
of these examples in Section 4.

Our analysis in the weakly concave setting is based on the following assumptions:

(W.1) There exists a convex, non-decreasing function 1 : [0, +00) — R such that

—(VF(0), 0 — 0%) > (|0 — 0°]|,)  for any 6 € RY.

Assumption (W.1) characterizes the weak concavity of the function F' around the global
maxima 6*. This condition can hold when the log-likelihood is locally strongly concave around
0* but only weakly concave in a global sense, or it can hold when the log-likelihood is weakly
concave but not strongly concave. An example of the former type is the logistic regression model
analyzed in Subsection 4.1, whereas an example of the latter type is given by over-specified
Gaussian mixture models Subsection 4.2.

Our next assumption controls the deviation between the gradients of the population and
sample likelihoods, and involves a failure probability § € (0,1):
(W.2) There exist a function € : N x (0,1] — R and a non-decreasing function ¢ : R — R

with that ¢(0) > 0 such that for any radius r > 0, we

sup |[VEL(0) — VF(0)|y < e(n,6)¢(r) with prob. at least 1 — 4.
0eB(6*,r)

This type of localized empirical process bounds appeared in many existing literature in the
study of M-estimators [50] and iterative algorithms [2, 12]. It is important to note that the
bound depends on the radius r, making it possible to yield near-optimal rates in singular
mixture models [12].

The previous conditions involved two functions, namely ¢ and (. We let £ : Ry — R
denote the inverse function of the strictly increasing function r — r{(r). Our third assumption
imposes certain inequalities on these functions and their derivatives:

This manuscript is for review purposes only.
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DIFFUSION FOR POSTERIOR CONTRACTION 9

(W.3) The function r — (&(r)) is convex, and ¢ and ( satisfy the differential inequalities

PG S () + r)Cr),  and
P 41 (1)C) o 30 C(r) + r2p(r)C () for all 1 > 0,

These differential inequalities are needed controlling the moments of the diffusion process
{0:}1>0 in equation (2.3). In our discussion of concrete examples, we provide instances for
which they are satisfied.

Our result involves a certain fixed point equation that depends on the parameters and
functions in our assumptions. In particular, for any tolerance parameter § € (0,1) and
sample size n, consider the following fixed point equation in the variable z > 0:

(3.1) U(2) = e(n,8)C ()3 + B 4 4 288
In order to ensure that this equation has a unique positive solution, our final assumption
imposes certain condition on the growth of the functions v and (:

(W.4) The limit lim irf Z((’ZZ)) is strictly positive, and the sample size n and tolerance
Z—r+00

parameter ¢ € (0,1) are such that £(n,d) < lim z_l)r#foo )

With this set-up, we are now ready to state our second main result:

Theorem 3.2. Suppose that Assumptions (A), and (W.1)— (W.3) hold. Then for any
given sample size n and 0 € (0,1) such that Assumption (W.4) holds, equation (3.1) has a
unique positive solution z*(n,d) such that

(3.2) Q( 10 — 0%y > 2%(n,0) | X?) <& with probability 1 — 6 w.r.t. X}

See Subsection 5.2 for the proof of Theorem 3.2.

A few comments are in order. First, the convergence guarantee (3.2) depends on the weak
convexity function ¢ and the perturbation function ¢ through the non-linear equation (3.1).
In order to understand the rate, we consider the following pair of fixed-point equations

(3.3a) P(z) = 2e(n,6)((2)z, with the solution z,.(n,d)
(3.3b) Y(z) =282+ 2% + 2%, with the solution z7,,(n, d).

It is easy to see that z*(n,8) < max {2}, (n,0), 25, (n,8) }.” This establishes that the posterior

contraction rates in Theorem 3.2 are fundamentally determined by two sources of errors: on the
one hand, it is known (see e.g. [50]) that the solution 2} (n,0) to equation (3.3a) determines
(up to constant factors) the rate of convergence for the maximal likelihood estimator; on the

3Suppose the converse is true. We have 1(2*(n,8)) > 2e(n,8)((z*(n,8))z*(n,8) and (2*(n,6)) >
282*(n,0) + 22 + 2%. Taking the average of two inequalities contradicts the fact that z*(n,d) is
the fixed point.

This manuscript is for review purposes only.
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*
pop
the posterior distribution itself. In particular, the term

(n,d) to equation (3.3b) captures the diffusive behavior from

2 is usually negligible as 27, <1

and B = O(V/d), and the solution to the equation 1(z) = %(1/5) essentially determines
the contraction rate of the “population-level posterior” Gibbs distribution whose density is
proportional to e""(?) when the function —(VE(6), § — 6*) locally behaves like (][0 — 6*|,).
We suspect that such an additional term is unavoidable for posterior contraction results, and
we defer a rigorous justification via asymptotic shape of the re-scaled posterior to future works.

Second, at least in general, it is not possible to compute an explicit form for the positive
solution z*(n,d) to the non-linear equation (3.1). However, for certain forms of the function
1 and ¢, we can derive a relatively simple upper bound. For instance, given some positive
parameters (o, ) such that a > 8, suppose that these functions are defined locally, in a
interval above zero, as follows:

other hand, the solution z

(3.4a) Y(r)y=rot and ((r) =17 for all r in some interval [0, 7).

Moreover, suppose that the perturbation function takes the form

(3.4b) £(n,8) = \/(d +log(})) /n.

As shown in in Section 4, these particular forms arise in several statistical models, including
Bayesian logistic regression and over specified Bayesian Gaussian mixture models. Under these
conditions, we have the following simple upper bound:

Corollary 3.3. Assume that the functions 1, ¢ have the local behavior (3.4a), and the
perturbation term £(n,d) has the form (3.4b). If, in addition, the global forms of ¥ and ¢
satisfy Assumption (W.3), then for sufficiently large n, the scalar z*(n,d) from Theorem 3.2

1 1 i
satisfies the bound z*(n,d) < c (M) Y (%(1/6)) oty (B)e.

n n
Note that Corollary 3.3 ensures that the posterior has the following contraction property

s AT 1
(35) Q0 - 0°lp > ¢ (LB TP (B

n

X?) < ¢ with prob. 1 -4

with respect to the training data. The posterior convergence rate scales as (d/ n)ﬁ when
« > 26+ 1, in which case the posterior contraction rates match the maximal likelihood. On
the other hand, this rate becomes (d/ n)&%l when a < 26 + 1, and the posterior contraction is
slower than maximal likelihood, owing to its diffusive behavior.

Theorem 3.2 and Corollary 3.3 rely on global conditions (W.1) and (W.2). Although
these conditions can be verified for many practical examples (see Section 4), they can be
restrictive in some cases, especially when multiple local maxima of the population-level function
F exist. Using our techniques, it is possible to prove similar results under local assumptions.
In particular, suppose that these assumptions hold only in a local ball B(6*,r); then, the
non-asymptotic contraction rates in Theorem 3.2 and Corollary 3.3 are available as long as we
can show the posterior mass Q(B(6*,70)° | X{") is small with high probability. To obtain these
rates, we could apply the arguments in the proof of Theorem 3.2 to a modified distribution,

This manuscript is for review purposes only.
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which matches the shape of Q(- | X7") inside the ball B(6*,7¢), while exhibiting desirable
growth and smoothness conditions outside. We defer the detailed arguments based on local
assumptions as well as the study of the radius ry to future work.

3.3. Non-asymptotic Bernstein—von Mises results. In this section, we develop non-
asymptotic Bernstein—von Mises results using the diffusion process (2.3). Under mild assump-
tions on the population-level and empirical-level landscapes, we establish the KL divergence
between the posterior distribution and the limiting Gaussian distribution, as well as near-
optimal shape-dependent posterior contraction results.

In order to obtain the non-asymptotic Bernstein—von Mises results, we first need the
following assumptions on the second order derivatives with respect to the parameters (or
equivalently Hessian matrices) of the empirical and population log-likelihoods:

1BvM.1) There exists A > 0 such that the population log-likelihood function F' satisfies the

408

4%

one-point Lipschitz condition:

v e RY,  [VPF(6) — V2F(0")llop < A0 — 67,

11(BvM.2) For any ¢ > 0, there exist non-negative functions 552) and 5%2) with domain N x (0, 1]

412

413

114
415
416

11§

119
420
121
422
123
424
125
426
427
428
429
130
431
132
433
134
435
136

such that

sup  [[V2Fu(0) = V2E(O)|lop < 17 (n, 6)r + €5 (n, ),
0eB(0*,r)

for any radius r > 0 with probability at least 1 — §.
Additionally, we also impose a smoothness assumption on the prior distribution 7

(PS) |Viogm(61) — Viegm(62)|l, < Lo [|01 — b2, -

The first condition (BvM.1) is a standard smoothness condition needed to prove quantita-
tive results about asymptotic normality (e.g., the paper [35]), and satisfied by many models such
as exponential family models, location density models, as well as their mixtures and hierarchical
composition. The second condition (BvIM.2) is an empirical process condition on the Hessian
matrix V2F),. This condition can usually be verified using suitable concentration bounds for
each 6, as well as smoothness conditions on V2F,, used in controlling metric entropies. Both
assumptions are naturally needed: the limiting Gaussian law N (5("), (nH *)_1), which depends
on the population-level Hessian at the point #*. The shape of posterior distribution, on the
other hand, depends on the sample-level Hessian V2F}, in a local neighborhood of #*. These
two conditions are needed to relate the shape of the sample-level posterior with the matrix H*.
The condition (PS) on the prior distribution is relatively mild and satisfied by many practical
choices including Gaussian. As before, we note that these assumptions do not require the
model to be well-specified, and our non-asymptotic Bernstein—von Mises theorems applies to
the mis-specified case, where 6* is the KL-projection of the model to this parametric class.

Consider the MAP estimate 0" := arg maxgepa (F,(0) + 2 log7(6)). Then, we have the
following upper bound on the difference between the posterior distribution of the parameters
and the Gaussian distribution with mean #) and covariance matrix (nH*)~!, where H* :=
—V2F(6).
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Proposition 3.4. Under Assumptions (BvIM.1), (BvM.2) and PS, suppose that H* > 0,
and that Hg(”) —0*]2 < O'\/g and Eg(]|6 — 0*]]3 | X7)/4 < O’\/g with prob. 1 — 3. Then there
exists a constant ¢ such that the KL divergence Dgr(Q(- | X7) || N(g(”), (nH*)™1)) is at most

(2) 272 4 2
Cr 5 1(H*) <A2‘fa4 + 4 (n’i) AN <5§2)(n,5)2 + %) d) with prob. at least 1 — 24.

See Appendix A.2 for the proof of this claim.

A few remarks are in order. First, assuming that the problem-dependent constants
(A, 0, Ly) are of constant order, and that the deviation bound scales as Egz) (n,0) = O(1/y/n),
Proposition 3.4 shows that the KL divergence between the posterior distribution and the
Gaussian limit is of order O(1/n); second, the non-asymptotic behavior of posterior distribution
depends on the Hessian matrix H* = —V2F(#*). In the well-specified case where the data points
X7 are i.i.d. samples from the distribution Pyp«, the standard Fisher-information identity H* =
Eg« [V log pg+ (X)V log pg« (X )T] holds true, and the Bayesian credible set is asymptotically
the same as the confidence set in the frequentist sense. On the other hand, in the mis-specified
models where 0* = argmingcg Dkr(P || Py), the limiting Gaussian law is N(§<n>, (nH*)~1),
depending on the Hessian matrix but not the covariance of the log-likelihood. This result
coincides with the asymptotic Bernstein—von Mises theorem for mis-specified parametric
models [23], providing a non-asymptotic characterization. Using Pinsker’s inequality and
Talagrand’s Th-inequality [46], the KL divergence bound can also be transformed into bounds
in term of total variation and Wasserstein-2 distances, yielding a non-asymptotic O(1/4/n)
rate of convergence.

We can also use the diffusion process approach to derive more fine-grained concentration
bounds for the posterior distribution, with behavior matching the limiting Gaussian law. Doing
so requires the following stronger version of the posterior contraction condition:

1/ 2pd
(3.6) (E@ {HG - 9*||§p | XfD : < op , for all p > 0 with probability at least 1 — 4.

n

In addition, we define the function

Ho(t,8) = (A + 2 (n,5))

22 od
2 o't od <5<2> A

L? d
= 2 (n.8)* + 5 + (A+ e§2>(n,5))2”) ,
which plays the role of a higher-order term. Equipped with this notation, we have:

Theorem 3.5. Suppose that conditions (BvM.1), (BvM.2), and (PS) are in force, the
Hessian H* is strictly positive definite, and the high-probability posterior contraction con-
dition (3.6) holds. Then for any 6 € (0,1), uniformly over all w € (0,1) and t > 0, we
have

2 *
37 Q (Ha .y ">HH > (1 —i—w)% 4 L logRUHT) <:L + Halt, 5)) ‘ X{‘) <et,

w

with probability at least 1 — §.
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DIFFUSION FOR POSTERIOR CONTRACTION 13

See Appendix A.1 for the proof of the theorem.

A few remarks are in order. Note that the limiting Gaussian density v, = N (0, (nH *)*1)

satisfies a tail bound of the form fyn(H@ — 1%. >4+ %) < e~t/2 for any t > 0. Unless the

posterior is actually Gaussian in finite samples, it cannot satisfy this bound exactly. However,
Theorem 3.5 provides a bound with near-matching behavior: note that the leading-order term
scales %, matching the asymptotics with a pre-factor 1 + w that can be made arbitrarily close
to 1 (at the expense of the other term). The % dependency on the tail probability comes
with a mild log k(H*) factor due to technical reasons. The bound also contains a high-order
term H,(t,d), which scales as O(n~2). It is also worth noticing that the terms in Theorem 3.5
depend on the tail probability ¥ = e~! only logarithmically, allowing for very small value of
v. We can therefore use equation (3.7) to construct non-asymptotic credible sets of ellipsoid
shape, adapted to the geometry of local Hessian matrix H*.

Proof outline: The proofs of both Proposition 3.4 and Theorem 3.5 rely on a first-order
approximation of the gradient VF,,. In particular, the diffusion process (2.3) can be written in
the form df; = —%H*(Ht—@\(”))dt—l—%en(et)dt—i—ﬁ log 7(6;)dt+ %dBt, where we have defined the
linearization error e, (#) := VF,(0) + H*(6 —0*). Under the smoothness assumption (BvM.1)
and the empirical process bound (BvM.2), one can show that ||e, ()|, < ||6 — 0*[|,-O(\/d/n)
with high probability. When this error term is ignored, the diffusion process is an Ornstein—
Uhlenbeck process whose stationary distribution is A/ (@(n), (nH *)*1). Therefore, given the
non-asymptotic bounds on the error e, (6) stated above, we can provide a non-asymptotic
characterization of the distance between the stationary distribution and the limiting Gaussian
law. In order to prove Proposition 3.4, we use the Gaussian log-Sobolev inequality [19] to
control the KL divergence, whereas proving Theorem 3.5 is based on using It6 calculus to
study the growth of a Lyapunov function defined using the metric induced by H*. Full proofs
for the two results are given in Appendix A.2 and Appendix A.1, respectively.

4. Some illustrative examples. Having developed some general theory, we now use it
to derive some concrete results for two examples of interest in statistical analysis: Bayesian
logistic regression and Gaussian mixture models.

4.1. Bayesian logistic regression. Logistic regression is a classical way of modelling the
relationship between a binary response variable Y € {—1,+1} and a vector X € R? of
explanatory variables (e.g., see the book [30]). In the logistic regression model, the pair (X,Y)
are related by the conditional distribution

(4.1) P(Y =1]|X,6) =<2

ety where § € R? is a parameter vector.

Suppose that we observe a collection Z]" = {Z;}7"; of n i.i.d paired samples Z; = (X;,Y;),
each generated in the following way. First, the covariate vector X; is drawn from a standard
Gaussian distribution N (0, I;), and then the binary response Y; is drawn according to the
conditional distribution P (- | X;, 6*) from equation (4.1), where * € R? is a fixed but unknown
value of the parameter vector. Given these assumptions, the sample log-likelihood function
of the samples Z7' takes the form F2(0) := 25" | {logP (Y; | X;,0) + log $(X;)}, where ¢
denotes the density of a standard normal vector. Combining this log-likelihood with a given
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prior 7 over 6 yields the posterior distribution in the usual way. We assume that the prior
function 7 satisfies Assumption (A), and recall the constant B defined in this assumption.
Throughout this section, we also assume that the norm ||6*||, is a universal constant independent
of (n,d), and we suppress the dependence on this parameter.

With this set-up, the following result establishes the posterior convergence rate of 6 around
0*, conditionally on the observations Z7.

> c’dlog(%) i.i.d. samples from the Bayesian

logn =

logistic regression model (4.1), we have Q(HH —0*||]2 > c{\/g—i— \/ W +21 Z?) )
with probability 1 — 0 over the data Z7'.

Corollary 4.1. For any § € (0,1), given

See Appendix B.1 for the proof of this claim.

A few comments are in order. First, the result of Corollary 4.1 shows that for Bayesian
logistic regression model (4.1), the posterior convergence rate for the parameter is of the
order (d/n)'/2. Furthermore, this result also gives a concrete dependence of the rate on B
characterizing the degree to which the prior is concentrated away from the true parameter. By
taking the standard Gaussian prior 7 = N'(0, I;), we have B < ||0||,, which is bounded by a
universal constant independent of the pair (n,d).

It is important to note that Corollary 4.1 is valid as long as the sample size n is mildly
larger than the problem dimension d (up to logarithmic factors). To our knowledge, this is the
first time that a sharp non-asymptotic posterior contraction result is established in this regime.

Let us sketch how Theorem 3.2 can be applied so as to prove this corollary. Denote
FR .= E[FF] as the population-level log-likelihood function. The first step in our proof, as
given in Appendix B.1, is to show that there are universal constants ¢, c¢1, ¢co such that

16 — 0*[]3, for all |6 — 6%, <1
16 —6*]|,, otherwise

(4.2b)  sup [|[VERO) — VFRO)|, < cs (\/g+ N loggm)) |

fcRd

and

)

(4.2a) —(VFR(9), 0 —6*) > ¢, {

for any r > 0 with probability 1 — 4 as long as iz > cd log(1/6). Using these results, we show
that Assumptions (W.1) and (W.2) hold with

r?2  for all r € (0,1), and

) , and ((r) =co forall r > 0.
r  otherwise

(4.3) P(r) = a {

We can check that the functions ¢ and ( satisfy the conditions in Assumptions (W.3)
and (W.4). Therefore, applying Theorem 3.2 to these functions yields the posterior contraction
rate claimed in Corollary 4.1. See Appendix B.1 for the details.

4.2. Over-specified Bayesian Gaussian mixture models. Gaussian mixtures are widely
used for modelling heterogeneous datasets; clusters in the data are naturally associated with
different mixture components [26]. In fitting such models, the true number of components is
generally unknown, and several approaches have been proposed to deal with this challenge.
One of the most popular methods is to deliberately include a large number of components,
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leading to what are known as overspecified Gaussian mixture models [39]. While the behavior
of posterior densities in such mixture models is relatively well-understood [17], the behavior
of the posterior in terms of its parametric components is not as well understood. When the
covariance matrices are known and the parameter space is bounded, the location parameters
have been shown to have posterior convergence rates of the order n=/4 in the Wasserstein-2
metric [32]. However, neither the dependence on dimension d nor on the true number of
components have been established.

In this section, we consider the behavior of overspecified Gaussian mixture models in a
particular setting, and provide convergence rates for the parameters with precise dependence
on the dimension d, and without requiring any boundedness assumption. In order to model the
simplest form of over-specification, suppose that we fit a Bayesian location mixture model to a
collection of i.i.d. samples X} = (X7,...,X,,) drawn from a Gaussian distribution N (0*,I;).
(For concreteness, we set 0% = 0.) We study the behavior of the Bayesian Gaussian mixture
model
(4.4) 0~ (), Vie{-1,1} S Cat(1/2,1/2), Xi| Vi, 0 S N(Vi0,1,),
where Cat(1/2,1/2) stands for the categorical distribution with parameters (1/2,1/2). We
assume that the prior 7 satisfies the smoothness condition (cf. Assumption (A)); one example
is a Gaussian distribution (over the location parameter . Our goal in this section is to
characterize the posterior contraction rate of the location parameter # around 6*.

In order to do so, we first define the sample log-likelihood function FS given data X7
It has the form FS(0) := L 3" log (36(Xy; =0, 1) + 36(X4;0,14)), where z — ¢(z;0, I,) =
(277)_d/26_||x_9”§/2 denotes the density of multivariate Gaussian distribution N (6, 021;). Simi-
larly, the population log-likelihood function is given by

FO(6) = B [tog (30(Xs—0,1a) + 30(X:0.10)) |

where the outer expectation in the above display is taken with respect to X ~ N (6*, ).
In Appendix B.2, we prove that there is a universal constant ¢; > 0 such that

|6 —6*)5, for all || — 6%, < v/2

4cy (||9 —0*)|3 - 1) , otherwise

)

(4.5a) —(VFY(0), 0 — 6%) > {

and moreover, there are universal constants (¢, c2) such that for any 6 € (0,1), given a sample
size n > cdlog(1/0), we have

sup  |[|[VESG(0) = VFC@)|2 < e (r+ L . 71()?;(10%1(”/5)) with prob. 1 — 4.
0eB(0*,r) || ( ) ( )||2 2( ﬁ) ([ )

Given the above results, the functions ¢ and ¢ in Assumptions (W.1) and (W.2) take
the form

for all » > 0.

(4.6)  ¥(r) =

4 for all 0 <2
{clr, or a <7“_\f’ and C(r)zr—k

4cy (r2 — 1) , otherwise

b
NG
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These functions satisfy the conditions of Assumptions (W.3) and (W.4). Therefore, it leads to
the following result regarding the posterior contraction rate of parameters under overspecified
Bayesian location Gaussian mixtures (4.4):

Corollary 4.2. Given the overspecified Bayesian location Gaussian mizture model (4.4), there
are universal constants ¢,c such that given any § € (0,1) and a sample size n > ¢/dlog(1/4),

we have Q( |6 — 6%, >c (d + M)lﬂ + (%)1/3 ‘ X{‘) < 6 with probability 1 — 9 over

n

the data X7'. Here, B is the non-negative constant in Assumption (A).

See Appendix B.2 for the proof of Corollary 4.2.

The O(n~'/*) rate of convergence in Corollary 4.2 is consistent with the previous result
with location parameters in overspecified Bayesian location Gaussian mixtures [5, 22, 32], which
is also known to be minimax optimal [20]. When taking the problem dimension into account,
to our knowledge, the (d/n)/* posterior contraction rate is a novel result, and matches existing
analyses for frequentist methods [12]. Similar to the logistic regression case, Corollary 4.2
only requires the sample size n to be mildly larger than the dimension d. The non-asymptotic
posterior contraction results are also established for the first time in such a regime. Finally,
our result does not require the boundedness of the parameter space, in contrast to past
work [5, 22, 32].

5. Proofs. In this section, we collect the proofs of the main theorems.
5.1. Proof of Theorem 3.1. Throughout the proof, in order to simplify notation, we

omit the conditioning on the o-field F,, := o(X7); it should be taken as given. Introduce the
quantity o = 2p —e1(n, 6) > &. Our proof relies on proving the following auxiliary bound

1 at *2 1 (eat — 1)
. — — < — -
(5.1) 3 10— 071 < My U 5=

3e2(n,5)

where U, := 37%2 + + % and M; := fg e**(0; — 0*, dBs). By construction, the latter
term is a martingale.

The proof of the bound (5.1) is given later in this section; we take it as given for the
moment, and use it to prove the theorem. In order to bound the moments of martingale M,
for any p > 4, we invoke the Burkholder-Davis—Gundy inequality (e.g., §4.4 of the book [36])

to find that

]

E

sup rw’él < (pO)E [[MF] = (bC)
0<t<T

T i
E (/ e |10, — 9*||§ds>
0
p

T % C aT % 4
< (pC)%E < sup e 1|6 — 0*“3/ eo‘sds) < (p € ) E < sup e 160s — 9*||g> ,
0<t<T 0 « 0<t<T
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p

where C' is a universal constant. Therefore, we arrive at the bound
E(-Zam) +(v
< N
<(Jgm) -+ (o

p oT 5
-1 2
( sup e |0 — 9*||2> (e))
0<t<T a
oT % C oT % %
< (Une> + (p ‘ ) E ( sup €*%||6s — 9*”3) .
(6% an 0<s<T

For the right hand side of the above inequality, we can relate it to the left hand side by using
Young’s inequality, which is given by

pCeaT\ ¥ T 1 pcem™E :
( > E( sup e*||6s— 03] <= < > +ZE( sup e |6, — 65 .
an 0<s<T 2\ an 2 \o<s<r

Putting the above results together, and let a = %, we find that

1 2
(EW%“—W%DéS€“T<ESW>(“H9 GWP> <cﬂ<” \/p>
0<t<T np

for universal constant C’ > 0. Therefore, the diffusion process (2.3) satisfies the bound

sup (E [[|6; — Q*HP])% ( i+£+M+ p) for any p > 1.
10 \ . pn 1 \ np

Combining the above inequality with the inequality (5.3) yields the conclusion of the theorem.

E

5.1.1. Proof of claim (5.1). For the given choice a > 0, an application of It&’s formula
yields the decomposition

Leat g, — g2 = — L /t<9* 0, VEL(0,)e*)ds + - /t<95 0%, Vlog w(0,)e ) ds
2 20 2n J,
+i %@+/ Wcm>+1/u&w9—me
2n ) s 2 Jo s 2
(5.2) =J1+ J2 + J3+ Jy + Js.

We begin by bounding the term J; in equation (5.2). Based on Assumption (S.2) regarding
the perturbation error between F;, and F' and the strong convexity of F', we have

t
J1 = —;/ (0F — 05, VF,(05)e**)ds
0
I I
<— 2/ (0" — 05, VF(05)e**)ds + 2/ |60s — 0%, [IVE(6s) — VF,(0s)]|,e*ds
0 0
1 ! *(12 as 1 ! * * as
<5 [ mlo = e s k5 [ = 0l (2a(m.0) 6 — 8], + <o, 8))eds
1/t 1 [t 3e2(n,6) [*
<-— / 1|05 — 0%|5 e*ds + / 16 — %113 (e1(n, &) 4 p/3)e**ds + E2(n)/ e*ds.
2 Jo 2 Jo 2 Jo
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The second term Js involving prior 7 can be controlled in the following way:

1/t 1/t
J= 2 [0, 0%, Viogm(0,)e"%)ds < zn/ B0, — 67, e ds
0

2n 0
t 2 t
3B
g/ MHHS—G*ngO‘SdS—I—Q/ e ds.
o 6 n e Jo

For the third term J3, a direct calculation leads to

at 1
g dlet =1
2amn

Moving to the fourth term Jy = M;/\/n, it is a martingale (since M; is a martingale). Putting
the above results together and noting that o = %,u —e1(n,0) > &, we obtain the bound

1 (et —1)
— M, +Up—.
NLD et 20

Putting together the pieces yields the claim (5.1).

1 *
5 16— 675 <

5.2. Proof of Theorem 3.2. As in the proof of Theorem 3.1, we omit the conditioning on
Fn = o(X7). For any p > 2, we define the functions on the positive real line (0, 00) as

Vip)(r) =1 (rp%l) T‘Z%%, and 7, (rpflg(r)) = P2 (r).

Note that 7, is defined implicitly; let us verify that this definition is meaningful. By
Assumption (W.2), the function r — rP~1((r) is a strictly increasing and surjective, mapping
from [0, +-00) to [0, +00). Therefore, it is invertible, which ensures that the function 7, is
well-defined.

Now we claim that for any p > 2, the functions v, and 7(,) are convex and strictly
increasing, and that furthermore, the expectation E [||6; — 6*||5] is upper bounded by the
integral

D)

B 4

(5.3) g /O ( = Ry(s) + £(n, )7} (Ry(s)) + v} (Ry(s)) + Wua,;(z%p(s))ﬁ)ds,

where Fy(s) i=E |16, = 0°[[5~> (116 — 6°],)] -

Taking the above claims as given for the moment, let us now complete the proof of the
theorem. Since for each finite ¢ > 1, the process (6; : t > 0) converges in L4 norm, the limit
limy s 4o Rp(t) exists. Since the functions T(p) and V(p) are convex and strictly increasing, their
inverse functions are concave. Moreover, simple calculation leads to

()T
_ p—2 p— 2 14 T p—
(54) Vr (V(P;(T) pil) Tp- 1 u’(p)(l/l(r)).
(p)*"(p)

Since v(,) is convex and increasing, the numerator is a decreasing positive function of 7.
Additionally, the denominator is an increasing positive function of r. Therefore, the derivative
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p—2

in equation (5.4) is a decreasing function of r, and the function r — Vi % (r)»=T is concave.
Define the function

p—1+d _ p=2
V(pi(r)p_ ’

—

6(r) = —r + 2(m O)r 1) + DA ) +

n n

and observe that ¢ is concave and ¢(0) = 0. Let r, be the smallest positive solution to the
equation

p—1+d _y  p=2

_ B _ p—2
r =e(n, 5)T(p)1(r) + —V(pi(r) - V) (r)»=T.

n

We then have ¢(r) < 0 for » > r, and ¢(r) > 0 for r € (0,r,). By Lemma C.1, we have
limy 400 Rp(t) < 1y
Since v(p) is a convex and strictly increasing function, Jensen’s inequality implies that

(5.5) Ry(t) = B (116, — 07157 610 — 0711,)) > vy (B 110 — 075"

1
Therefore, if we define z, := lim;_, 4 (IE 16 — 9*||§_1> "' we have 227" < V@% (r+). Hence,

we arrive at the following inequality

- B p—1+d
—2 1 —1 —1 —92
27P() < e(n )7y (v (A7) + —a T+ ———2F

B —1+d

= e(n,8)2P71¢(2) + =227 + uzf‘?

n n

As a consequence, we find that
B+(p-1)d

P(2:) < e(n, 0)¢(2) 24 +

n

In Appendix C.4 of the supplementary material [31], we prove the existence and uniqueness of
the positive solution to the non-linear equation (3.1). Given this claim, replacing p by (p + 1)
and putting the above results together yields

1
lim (E ([0, — 0%[[5))> < 27,

t——+o0

where 2 is the unique positive solution to the following equation:

W(2) = e(n, 6)C ()7 + gz + Z%d.

=

Combining the above inequality with the inequality (5.3) yields the conclusion of the theorem.

We now return to prove our earlier claims about the behavior of the functions v, 7(,), the
moment bound (5.3), and the existence of unique positive solution to equation (3.1).
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5.2.1. Structure of the function v(,). Since 1) is a convex and strictly increasing function,
by taking the second derivative, we find that

1 p—2

V&,)(T) = V2 (¢ (’I”F) Tﬁ>

e () (¢ ) e ()
p b

for all r > 0. As a consequence, the function v, is convex.

D)

5.2.2. Structure of the function 7). The proof is by calculating the second derivative of
the function 7(;,), and we make use of Assumption (W.3) on the functions ) and ¢. Recall
that 7, (r"~1¢(r)) = 724 (r) for any r > 0. Taking derivatives with respect to r on both
sides, we find that

[(p = 1)rP=2¢(r) + 1771 ()] 70,y (1P7HC(1)) = (p = 2)rP 20 (r) + P72 ().

Under the substitution z = () (r), we find that V.7, (2) = (;p_fl%%g:gi:%@)

Taking another derivative of the above term, we find that

Vir(z) = (¢ (r - o) ’
2w (2) (C(p)( )) ((p — D)rc(r) +r2¢(r))?

where we denote

g(r,p) = [(p = 1)r¢(r) +12¢ ()] - [(p = 1)/ (r) + 14" (r)]
— [0 = 1)¢(r) + (0 + 1)r¢ (r) +72¢" ()] - [(p = 2)(r) + 9/ (r)] -

According to Assumption (W.3), the function 7(5) = 1(9) 0 C@% is convex. Therefore, we have

g(r,2) > 0 for any r > 0. Simple algebra with first order derivative of function g with respect
to parameter p leads to

(
o= 1) + (0 + D¢ (r) + 72" (r)]
) ) = (r)¢(r) = r¢ (r)e(r)]
W' (r)¢(r) = 3¢(r)¢(r) — r*9(r)¢"(r)] = 0

+
—
S
DO
a
—
E
~—"
S
/\\
=
SN—
+
3

for all » > 0. Here the last inequality follows from Assumption (W.3). Therefore, the function
g is increasing function in terms of p when p > 2, so that g(r,p) > g(r,2) > 0 for all » > 0.
Given this inequality, we have %T(p)(z) >0 for any z > 0, p > 2, i.e., the function 7,)(2) is a
convex function for z = () (7).
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5.2.3. Proof of claim (5.3). For any p > 2, an application of Itd’s formula yields the
bound ||6; — 6*||5 < 23:1 T, where

(5.60) 1= =8 [~ 0, VE0) 10— 05

(5.6b) 1=t [0 = 0. VE@) - VR0 16, - 05 s
(5.6¢) Tyi= 2 [0, -0, V0w (0 10, - 0715 s
(5.6d) Ty = p/ot 16, — %122 (6, — 6%, dB)

(5.6e) Ty = IW /Ot 10, — 0%||22 ds.

We now upper bound the terms {7} }?:1 in terms of functionals of the quantity R,. From the
weak convexity of F' guaranteed by Assumption W.1, we have

t t
(5.7a) E[Th] = —gE [/ (0" — 05, VF(05)) |10s — 9*||’2”2 ds] < —229/ Ry(s)ds.
0 0
Based on Assumption (W.2), we find that
t
E([Ty) = gn«: { / (0" — 05, VE(05) — VE,(05)) 105 — 07152 ds]
0

<

o3

t
(n.8) [ B [10.~ 0717 10~ 1)) s

Since the function (
ties:

p) is convex, invoking Jensen’s inequality, we obtain the following inequali-

t

t
/0 E (116, = 0°157 ¢ (110 — 0°1l,)] ds < /0 7ot E 76 (10— 07157 ¢Cllo, — 071) ) | ds
t
_ —1
_ /O L (Ry(s)) ds.
In light of the above inequalities, we have

(5.7b) E (T3] < ge(n, 5) /0 7o) (Bp(s)) ds.

Moving to T3 in equation (5.6¢), given Assumption (A) which controls the growth of prior
distribution m, its expectation is bounded as

t
Bl = LB | [ 0. - 0% Viogr(0.) 10, ~ o 2 ds

5.7 pB tE 0 o* p—1 /
. < (;.
( C) 2n 0 |:H s H2 ]
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By exploiting the bound (5.5) along with the fact that v/, is strictly increasing on [0, +o0),
we find that

t

(5.7d) /Ot]E (16— 0°(15") s < /0 VoL (Ry(s) ds.

Combining the inequalities (5.7¢) and (5.7d), we have

(5.7¢) E (1] < % /0 VoL (Ry(s) ds.

Moving to the fourth term 7} from equation (5.6d), we have

(5.76) E[Ty = E Uot 16, — 0|22 (9, — 6*, st>] _o,

where we have used the martingale structure.
For the last term T3, invoking Holder’s inequality and the bound (5.5), we have the moment
estimate:

p—2
1 -1 p=2

E (1165 - 0°157) < (B [I6, - 0*157] )" < v} (Ry(s))37 .
Consequently, the term 75 can be bounded in expectation as

(5.7¢) Brs) < P2 D [ (o) s

Collecting the bounds on the expectations of the terms {T]}?:1 from equations (5.7a)-(5.7g),
respectively, yields the claim (5.3).

6. Discussion. In this paper, we described an approach for analyzing the posterior con-
traction rates of parameters based on the diffusion processes. Our theory depends on two
important features: the local growth of the population log-likelihood function F' and stochastic
perturbation bounds between the gradient of F' and the gradient of its sample counterpart
F,,. For strongly concave log-likelihood functions, we established posterior convergence rates
for parameter estimation of the order (d/n)l/ 2 valid under appropriate conditions on the
perturbation error between VF,, and VF' and sharp sample size requirements. On the other
hand, when the population log-likelihood function is weakly concave, our analysis shows that
convergence rates are more delicate: they depend on an interaction between the degree of
weak convexity, and the stochastic error bounds. In this setting, we proved that the posterior
convergence rate of parameter is upper bounded by the unique positive solution of a non-linear
equation determined by the previous interplay. Compared to the convergence rate of MLE,
the bound contains an additional term capturing the diffusive behavior of the posterior dis-
tribution. Finally, we demonstrated the utility of the diffusion process approach by deriving
non-asymptotic forms of Bernstein—von Mises results for models with non-degenerate Fisher
information.
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Let us now discuss a few directions that arise naturally from our work. First, in the
weakly convex setting, although we have established non-asymptotic posterior contraction
bounds, the current results do not provide information on the shape of the asymptotic posterior
distribution. For example, when F' is locally strongly concave around 6*, it is well-known from
the Bernstein—von Mises theorem that the posterior distribution of parameter converges to a
multivariate normal distribution centered at the maximum likelihood estimation (MLE) with
the covariance matrix is given by 1/ (nI(6*)) (e.g., see the book [51], Chapter 10.2), where
I1(0*) denotes the Fisher information matrix at #*. When the F' is only weakly concave, the
Fisher information matrix I(6*) is degenerate, so that the posterior distribution can no longer
be approximated by a multivariate Gaussian distribution. It is interesting to consider how the
diffusion approach might provide insight into the shape of the posterior in this setting.

Second, the contraction rates given in this paper can give information about the over-
specification of the latent variable models, thereby having potential applications for model
selection. As a concrete example, for the symmetric two-component Gaussian mixture model
example discussed in Subsection 4.2, the posterior distribution concentrates around 6* = 0
at a rate O((d/n)l/ *) in the over-specified case. On the other hand, for a non-degenerate
mixture with symmetric modes at #* and —0* (with 8* # 0), it concentrates at the usual rate
O((d/ n)Y/ 2). Consequently, the degree of dispersion in the posterior serves as an indicator of
over-specification. Furthermore, since our results are non-asymptotic, they also give guidance
on how this procedure could be performed with finite sample size n. Finally, whereas this
paper focused on posterior contraction for parametric models, we suspect that the diffusion
process approach used here might also be fruitfully applied to non-parametric models.
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1 SUPPLEMENTARY MATERIALS: A Diffusion Process Perspective on Posterior
2 Contraction Rates for Parameters

3 Wenlong Mou*, Nhat Hof, Martin Wainwrighti, Peter Bartlett’, and Michael Jordant

. ]

5 This supplementary material is devoted to the proofs deferred from the main paper. In
6 Appendix A, we present the proofs of non-asymptotic Bernstein—von Mises theorems using
7 tools from diffusion process theory. The proofs of our main corollaries are given in Appendix B,
8 whereas Appendix C is devoted to the proofs of auxiliary results.

9 Appendix A. Proofs of non-asymptotic Bernstein—von Mises results. In this section,
10 we collect the proofs of Theorem 3.5 and Proposition 3.4.

11 A.1. Proof of Theorem 3.5. For any fixed T" > 0, we define the sequence of potential
12 functions ®; : R4 —» R

13 D4(0) := (6 — 6™, H*eT (=19 — 5("))>, for each t € [0, T].
15 Once again, we consider the diffusion process

1
( n

I8 with the initial condition 6y = (™). Using It&’s formula, for ¢ € [0, 7], we have

t t
" (I)t(et) = %(es)ds - / <V(I)s(05)v VFn(Hs) - Mﬂls
0 85 0 n
2 [t 1 [t
20 +\f / (VD (0,), dB,) + - / A, (0,)ds
nJo nJo
t T R
21 = / <H*(95 — %) — VL (6,) + Vlogﬂ”““) H ™00, — 0')ds
0
:=Il(t)
2 [t . 1/t .
29 (Al) _{_\/7/ (9s_é\(n))TH*€(S_T)H st+/ T‘I’(H*GH (S—T)) ds .
nJo n Jo
23 La(t) I3(t)

21 Note that the matrices H* and e~ D" commute, so that we may write their product in an
25 arbitrary order.

26 Defining the linearization error
_ (2) _ ol + |lam — ¢* 2) L2
a7 A= (A+ e (,0) (1105 = 0"ll, + [0 — 07| )+, 0) + 2,

*Department of EECS, UC Berkeley.
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we claim that the following bounds hold for each ¢ € [0, T:
(A.2a)
¢
L) < 2R sup @,(0,) +a/ A2 (\yes 03+ o) — o
0

a 0<s<t

2 Amin (H*)
) e~ e =Ty,
2

1/p " 1/p
(A.2b) <]E sup |I2(t)|p> SC\/p(1+log/€(H ) <E sup q)t(gt)m) . and
0<t<T n 0<t<T
d

(A.2¢) I5(t) -

Here ¢ > 0 is an universal constant. We prove all of these bounds in the subsections to follow.
Taking these bounds as given for the moment, let us complete the proof of the theorem.
By Jensen’s inequality, for an even integer p > 2, the moments of the integral term in

equation (A.2a) can be bounded as
2 o (H* P
) et ><3_T>ds>
2

T
(A3) E </ A2 (\yes — 07|12 + H9<"> _
0
2 : *
p) e_ >‘m1n2(H )(S_T)ds’

¢ e g 2p 2p n(n)
< - ]E’ A . — * n) _ p*
_(Amm(H*)) | A (ue o113 + |0 — 7|

for a universal constant ¢ > 0.
For any w € (0,1), by taking supremum on both sides of the decomposition (A.1), combining

with the bounds (A.2a) and (A.2¢), and taking a = c%, we arrive at the inequality

d
sup P(0;) < (1 +w) ( + sup Ig(t)>
0<t<T n - o<t<T

2 +logk(H*)) [ \ ) e

w

2 Amin H*

Taking p-th moment on both sides of the inequality, combining with the bounds (A.2b)
and (A.3), and applying Minkowski’s inequality, we arrive at the bound

1/p : %
<IE sup <I>t(9t)p) <(1 —i—w)g + \/CP(I +log n(H")) (E sup <I>t(9t)p>

0<t<T n n 0<t<T
1
2p /
2

Substituting with the definition of the last term, and applying Young’s inequality, we find that

c(2 +log k(H™)) [ 9 < 2
+ sup E|AZ (10, — 6%|%F + ||o™) — ¢*
e (A (-0 |

1/p
d  1+logk(H*) (p  Hn(p,o)
P < = _— |- —=
(IE sup P4 (6;) ) <(ltw)-+e w n Amin(H*) )’

0<t<T
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A.1 Proof of Theorem 3.5 SM3

where the high-order term H,,(p, d) is defined as

N 1/p
Ha(p, 8) =(4 + =7 (n,0))* (Eq |0 — 0°)17")

+ H§("> — 0

2 1.2
i <s§2> (n,0) + 2 + (A+ ¢ (n, 0))” HZ)W _

)

A.1.1. Proof of claim (A.2a). We first bound the term /;(¢). Noting the defining identity
VF,(0™) + 1V log 7(8™) = 0, we have the following bound:

Putting together the pieces yields the conclusion of the theorem.

HH*(GS M)~ VEL(0,) + Vlogw(@s)/nHZ

1 ~ ~
/ <H* — V2F, (705 + (1 — 'y)a")) + VZlog (785 + (1 — 7)9("))/71) (05 — 0™ dry
0

2

1
< / |H* — V2F, (705 + (1 = 7)8™) + VZ1og (185 + (1 — 7)8™) /n]., - ||6s — 6
0

dry.
27

By Assumptions (BvM.1), (BvM.2), and (PS), for any § € R%, we have the bound

IH* = V2 Fa (6) + V2 log m(6) /nll.s
< NH* = V2F(O) oy + IV2F(0) = V2En(O)llop + IV log 7(8) /],

L
< A9 = 67l + =1 (n,8) 16 — 6", + 57 (n,6) + 2.

Substituting into the bound for I;(t), for any a > 0, we have that

t
Li(t) < / ()2t =02
0

x || H* = V2F,(0,) + V2log 7 (6s) /n]|,

6, — 8 ">H2 V,(0,)ds

t
<a ! sup By(d,)- /0 ()2 =T g

0<s<t

A
0, — 0| et D2 ds

t
ta [ IH = V(0.0 + VP log (6. /nlf, -
0

2+1 H*
< 2o nlHY) o 5.0
a 0<s<t

t —~
n a/ A2 <||95 — 0|2 + H(M o
0

2 Amnin (H*)
> P Cau Dl Y
2

Therefore, claim (A.2a) follows.
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85 A.1.2. Proof of claim (A.2b). Note that I2(¢) is a martingale with respect to the Brownian
86 filtration. Applying the Burkholder-Gundy-Davis inequality for an arbitrary p > 2 yields

1/p
(IE sup |]2(t)|p> <P <]E (/ HH* (-=T)H" (g, _ §ln)) H dt) )
0<t<T n
T 2\ 1/p
, p 172 ST H* 12 :
88 <Cy/ |E I(H™) " Ze 27 |7, P4 (6r)dt
0
“ - \/7 (E sup q)t Qt /2 ) \// |” H* 1/2 TH*m? dt.
n 0<t<T

90

1/p

09}
-3

91 We now observe that
o2 ()2 32, = e, = e (O ()N )
93 €

94 Taking the time integral leads to the bound

T —T 7% +oo N
05 / ()2 5 2 dt < / e (X (H*)e 01 at
0 o i€ld)
“+o0
96 g/ max ()\e_“‘) dt.
0 Amin(H*)S)\S/\max(H*)
97 =7

98  We now split the integral .J into three parts, thereby obtaining

)\max(H*)_l .
99 J S/ )\maX(H*)e—t)\max(H )dt
0
Amin(H*)71 dt —+00 .
100 _|_/ - +/ Amin(H*)e—t)\min(H )dt
Amax (H*)~1 et Amin (H*)~1

1 Amax (H™)
101 (A4 <14 - log 7.
102 (A4) Amin (H*)

103 Denote k(M) := imf"‘((M)) for a positive definite matrix M. Collecting the above inequalities,

104 we find that the term I5(t) is upper bounded as

v (L + log r(H") v
105 (IE sup \Ig(t)\p> SC\/p & (E sup (I)t(et)P/2>

0<t<T n 0<t<T

107 for a universal constant ¢ > 0. This completes the proof of the claim (A.2b).

108 A.1.3. Proof of claim (A.2c). Finally, the term I3(t) is straightforward to upper bound as

1 . 1 +oo . d
109 I3(t) < =Tr <H / et (S_T)ds> < ~Tr (H / e ds) =,
110 n 0 n 0 n

111 which establishes the claim (A.2c).
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A.2 Proof of Proposition 3.4 SM5

A.2. Proof of Proposition 3.4. We introduce the shorthand pu := ./\/'(67(”), (nH*)*l) for
the target density. Since H* > 0, the Gaussian log-Sobolev inequality implies that

(A5) Dxu(Q( [ X7) || p) < /HVIOgQ(9|X1) Vlog u(6)[l; Q(d6 | X7).

m
Since p is a Gaussian density, we find that
Vlog u(8) = —nH*(6 — 8™).
For the posterior density Q(- | X{"), we note that
Viog Q(0|XT") = —nVF,(0) + Vlogw(0)
= /01 (—nVQFn(”yG + (1 =)™ 4+ V2log (0 + (1 — v)é\("))>
x (6 — 0" dy

Putting the above equations together yields

IV1og Q6 | X1') — Vlog pu(0)]l,

1
<n [ VR0 + (1= )0") ~ B+ VP log (26 + (1= )8l - o~ 8] a.
0
By Assumptions (BvM.1), (BvM.2), and (PS), we have the bounds
[V2Fn (76 + (1 = )8™) + V2log n(40 + (1 — 1)0™) /0 — H |,
< IV2F(0 + (1 = 7)™ — H |,
~ L
FIVPE (30 + (1= )8™) = VFo (36 + (1 = )8 ™), +

L
SAH79+(1—7)§(”)—9* 2+5§2)(n,5)+

n .

+eD(n,4) He — g

Substituting this bound into the bound (A.5) yields

~, 4
Dy (Q(- [ XT) [ 1) < — (A Eq |0 — 675 | X7 +A[6™ — ¥
Amin (H ) 2
(2)
nf—: (n,(5 n)
+ )\mm(H*)E@ [He 9 |X1]

+ (e (n,8) + La/n) - [He Q)

1.
As a consequence, we obtain the conclusion of the proposition.

Appendix B. Proofs of corollaries. In this appendix, we collect the proofs of several
corollaries stated in the main text and Section 4. The crux of the proofs of these corollaries
involves a verification of assumptions to invoke the respective theorems. Note that the values
of universal constants may change from line to line.
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145 B.1. Proof of Corollary 4.1. We begin by verifying claim (4.2a) about the structure
146 of the negative population log-likelihood function F'® and claim (4.2b) about the uniform
147 perturbation error between VF and VEE.

148 B.1.1. Proof of claim (4.2a). Following some algebra, we find that
149 ~FRO) =E [—Ylog (1 + e_<X’0>> —(1-Y)log (1 + e<X’9>)}
1 1
- TN P S A (x,0)
2 E[L+KMWﬂbgO+* )+1+axmﬂ%<y+e ﬂ’

152 where the above expectations are taken with respect to X ~ N(0,021;) and Y|X following
153 probability distribution generated from logistic model (4.1). Taking the derivative of F'® with
154 respect to 0 yields

155 (VFE(9), 0" — 0)

156 =E
5

]_ <X19> ]_ _<X79> _<X76>
+e _ +e : e (X, 0- 0.
L+elX0 14 e (X507 ] (14 e (X.0))2
158 By the mean value theorem, there exists £ between 0 and (X, 6 — 6*) such that

e(X’9*>+‘£ 67<X70*>7£ )

1+€<X79> 1 +€7<X79>
e 1 e X

159 1+6<X’9*>—1+€<X79*>:<X,0—0><

161 In light of the above equality, we arrive at the following inequalities:

VFR(9), 0" — 0) > E f eRi e
162 *—0) > i
( < ©), )= [|£|e[o,|<1§,ee*>u T4 @i 110
7<X79>

. € _p*\|2

163 x (1+67<X,0>)2|<Xa 0 —0%)] ]
1 * e (X, 0)
6 Lo x,0-0y € 2
164 >E 5¢ (1+e—<X:9>)2‘<X’9 6")|
Lo T 10, 0-0%)—|(X,0)] .
165 ZéE[e (X, 0 — 0>\]
1 *

166 2 g E [14(x,001<2, |(x, 0-0+) <2} (X, 0 — 07) 7]
168 Since X ~ N(0,1;), we have

| (X, 0) } ( [ ez <, 0—0*>]>
169 w| ~N (0, ; » :
170 [<X, 0—0) 0,067 00"
171 Given that result, direct calculation leads to
172 E (1q(x.0)1<2(x.0-07) <23 (X, 0 = 7))

: C * (12
173 > 0—0%|5,
E G+l —ogy 1~k
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B.1 Proof of Corollary 4.1 SM7

for a universal constant ¢ > 0. Collecting the above results, for all # such that ||§ — 6%, <1,
we achieve that

VER®), 0F — 9) > ¢ 0 —0%||2
(VERO). 6 =0 = T erya o —ey 10 7
1 9
>c—— |16 — 0%
E R

For 6 with ||§ — 6*[|, > 1, let 0 =0+ H9 9*H Then, we find that

(VER(0), 0* — 0) > (VFE(0), 0" — 0) > ¢

> s g 18— llas
2(1+ 116*[],) ?

which yields the claim (4.2a).

B.1.2. Proof of the bound (4.2b). In this appendix, we prove the uniform bound (4.2b)
between the empirical and population likelihood gradients. It suffices to establish the following
stronger result:

- _ . d log(1/6)  log(1/6)
(B.1) 7 = ;;H@HVFf(H) VFR(Q)HQS {\/;-1-\/74_ - }’

with probability at least 1 — ¢ for any oo g = codlog(1/§) where ¢ is a universal constant.

In order to prove the claim (B.1), We exploit a concentration inequality due to Adam-
czak [SM1]; it gives tight tail bounds for supremum of unbounded empirical processes. Through-
out our derivation, we use [|X|[, to denote the Orlicz 1o norm for a random variable X, for
any « € (0,2]. Let us state a simplified version of a theorem due to Adamczak:

Proposition B.1 (Theorem 4, [SM1], simplified version). Let (x,0) — f(0;z) be a function

with domain © x X, and suppose that there is a function F': X — R such that | f(0,x)| < F(z)

for any 0 € ©. Let X1, Xo,--+ , Xp bLd Px, and suppose that HFH¢ < 400 for some o < 1.

Then the random variable Z, := X suppee |> iy f(0; Xi) — E[f(0; X)]| satisfies the bound:

IP’(Z >2E[Z]~I—t)< (_t2>+3 _ t a
. W= EPTEEX) TP\ efmaxie OO, ) )

for a universal constant ¢ > 0.

In order to prove the claim (B.1), we begin by writing Z as the supremum of a stochastic
process. Let S denote the Euclidean sphere in R?, and define the stochastic process

qug X, Yi) = B[ fus(X, V)],

u0 =
y(z, 0)
where fyo(z,y) = %, indexed by vectors u € S*! and 0 € B(#*;r). The outer
ey,

expectation in the above display is taken with respect to (X,Y) drawn from the logistic
model (4.1)
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SM8 W. MOU, N. HO, M. J. WAINWRIGHT, P. L. BARTLETT, AND M. I. JORDAN

Observe that Z = sup sup Z,g. Let {ul,...,u"} be a 1/8-covering of S%1 in the
ueSd—1 geRd
Euclidean norm; there exists such a set with N < 17¢ elements. By a standard discretization
argument (see Chapter 6, [SM5]), we have

Z <2 max_ sup Z,jg.
J=1:N gepd

Accordingly, the remainder of our argument focuses on bounding the random variable
V = suppepd Zu g, where the vector u € S¥1 should be understood as arbitrary but fixed.
For each u € S?! fixed, we note that F'(X,Y) = [(X, u)| is an envelop function for the class
(fu0(X,Y))pera. Additionally, by standard tail bounds for maximum of Gaussian random
variables, we know that:

max F(X;,Y;)

< +/logn.
1<i<n - &

1

Consequently, invoking Proposition B.1 yields that

(B.2) V < 2E[V] + 21og(1/6) n clog7(ll/5) Jlogn

n

with probability at least 1 — §.
Now define the symmetrized random variable

V' = sup
HeRd

1 n
- > eifou(Xi, Vi)
=1

where {g;}}" ; is an i.i.d. sequence of Rademacher variables. By standard symmetrization
arguments, we have

E[V] <2E[V'].

We now bound the expectation of V’, first over the Rademacher variables. Consider the
function class

G = {g0: (x.9) = (x. uppola,y) | 6 R},

It is clear that the function class G has the envelope function G(z) := |(z, u)|. We claim that
the Lo-covering number of G can be bounded as

B B 1 c(d+D)
B3) N =[N (612t |G| < (t) for all ¢ > 0,

where ¢ > 0 is a universal constant.
Let us take the claim (B.3) as given for the moment, and use it to bound the ex-
pectation of V', first over the Rademacher variables. Define the empirical expectation
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P,(G?) := 1 Sy (X, u)?. Invoking Dudley’s entropy integral bound (e.g., Theorem 5.22,
[SM5]), we ﬁnd that there are universal constants C,C” such that

2(G2)
E gi9( X, Y)|| <C / \/1+10gN
<’ Pn(C_ﬂ)\/g
n

Up to this point, we have been conditioning on the observations {X;}? ;. Taking expectations
over them as well yields

(B.4) IEaX{L[V’]gC’\/z .EX?[ GQ] <c’\f VExp [Pa(G2)] W c'\f

where step (i) follows from Jensen’s inequality; and step (ii) uses the fact that Exp[P (G = 1.
Putting together the bounds (B.2) and (B.4) yields the following bound with probability 1 — ¢:

/d+logd—1 log§—1
V<e + o8 —i—cOg v/logn.
n n

This probability bound holds for each v € S¥~!. By taking the union bound over the 1/8-
covering set {ul,...,uN} of S* ! where N < 17¢ and applying above bound with ¢’ = §/N,
we obtain the claim (B.1) for sample size satisfying > cdlog(1/9).

E.[V'] = E. |sup |-
geG

logn

B.1.3. Proof of claim (B.3). We consider a fixed sequence (z;, y;, ;)i where y; € {—1,1},
r; € R4 and t; € R for i € [m]. Now, we suppose that for any binary sequence (z;)", € {0, 1}m
there exists 6 € R? such that

zi = T[(X;, uype(X;,Y;) > t4] for all i € [m)].
Following some algebra, we find that
Yit; >0 z=1
T ili = i
x; 0 —log —————— .
i g<Xi7u>_}/iti {<O z; =20

Consequently, the set {[y;z;, log(Yit;/((Xi, u) —Yit;))]}i of (d+1)-dimensional points can be
shattered by linear separators. Therefore, we have m < d + 2, which leads to the VC subgraph
dimension of G to be at most d + 2 (e.g., see the book [SM4]). As a consequence, we obtain
the conclusion of the claim (B.3).

B.2. Proof of Corollary 4.2. We prove Corollary 4.2 by verifying the claims (4.5a)
and (4.5b).

B.2.1. Structure of F“. Direct algebra leads to the following equation
T
(VFC(9), 0 — §) = (9 ~E [X tanh (XTG)D (6 — 6%

(B.5) > (0]~ 61, | [X tanh (x70)] |
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SM10 W. MOU, N. HO, M. J. WAINWRIGHT, P. L. BARTLETT, AND M. I. JORDAN

where tanh(z) := % for all x € R. From Theorem 2 in Dwivedi et al. [SM3], we
have

HIE[Xtanh(XTGHHQS 1—p+p”92”g 1611

for all # € R? where p := P (|Y| < 1) + 3P (Y| > 1) where Y ~ N(0,1). Plugging the above
inequality into equation (B.5) leads to
plols {Z 1613, for [6]l, < V2

VFEY ), 6* —6) >
( (0) ) g <||9||§ - 1) , otherwise

S 240l
As a consequence, we achieve the conclusion of claim (4.5a).

B.2.2. Perturbation error between VI'“ and VF". Direct calculation indicates the
following equation:

VEC(9) — VFC() = % zn;X tanh(X; 0) — E [X tanh (XTGH .

The outer expectation in the above display is taken with respect to X ~ N(0*,021;) where
0* = 0. Based on the proof argument of Lemma 1 from the paper [SM3], for each r > 0, we
have the following concentration inequality

]P’( sup
0eB(0*,r) 9

(B.6) < cm/CHlos(l/é)> >1-9,

for any § > 0 as long as the sample size n > ¢’dlog(1/§) where ¢ and ¢ are universal constants.
For any M € N, by the concentration bound (B.6) and the union bound, we find that

Iy Toy T
E;thanh(Xl 0) ]E[Xtanh (X 9)]

n-
1=

]P(Vre[Q—M,u, sup ||[VES(0) — FE(9)],
0eB(0*,r)

®) or O 5

On the other hand, based on the standard inequality |[tanh(z)| < |z| for all z € R, we find
that

|VES(6) — VFC(8)||, < ;z} 1, ‘tanh (Xje)‘ +E [”X”2 }tanh (XTe) H
< ;g Xl | X7 0] + E [, | x|

(;Z 113 +E [HXH%}) 161l
=1

IN
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C.1 Proof of Proposition 2.1 SM11

Therefore, we have HVFE(H) - VFG(c9)H2 < 2d||0||y1log(1/0) with probability 1 —¢§. By
choosing M :=log(2nd), based on the previous bound, we obtain that

log(1/6
(B.8) P(vr<2M, sup HVFG 6) = VFO@)|, < log(1/9) ) 5 1 _5
0EB(6*,r n
Furthermore, for vector § € R? with large norm, by the concentration bound (B.6) combined

with the union bound, for any M’ € N, we find that

P(Vr e [1,2M], sup HVFG @,
0eB(0*,r
‘Hlog(M//‘S)) >1-6

n

When r in the above bound is too large, we can simply use the fact that tanh is a bounded
function. We thus have the upper bound

IVES(0) = V)|, < E[IX]l,) Z 1Xilly
for any 6. Given the above bound, by choosing M := log(24/n), we obtain that

)
P(vr>2M2 sup HVFS(H) - VFG(Q))H2 < d +log(1/9)
0eB(6*,r) n

(B.9) zp( 1]l ZHXHQ 2M2\/‘”li§“/‘”)21—5.

Putting the bounds (B.7), (B.8), and (B.9) together, for n > cdlog(1/d), the following
probability bound holds

IP’<V1“ >0, sup HVFS(H) — VF%(0))

0cB(6* 1) ’ ’ 2

. \/d+10g (ogn/d) 1°g(1/5)> >1-34,

n n

which completes the proof of the claim (4.5b).

Appendix C. Proofs of the remaining auxiliary results.
In this appendix, we provide proofs of the remaining auxiliary results in the paper.

C.1. Proof of Proposition 2.1. For any p > 2, we define the quantity:

By = sup (B, (| XI5V (B [ X )"
b=
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For any given value R > 0, we note the following decomposition:

|[Exr, |

IXIE] - Exe [1X]2)
< / =] el d + / (@) 2l de + / (@) el de
IB( C R)C

) ) )

IN

P dry(me, ™) + Er, [‘|XH12)1||X||2>R} + Ep- [HXHngX||2>R}

< RP. dTv(ﬂ't, 7T*) -+ 2R12?p . RQ/R

For any € > 0, take R := we have that:

TR
2p 2

. M ] <
Jm B, [IXI5] — Exe [[| X 5] <,

which proves the claim.

C.2. A limit result. We begin with a lemma on the limiting behavior of a certain type of
function. The lemma is used in the proof of Theorem 3.2 in Subsection 5.2.

Lemma C.1. Let ¢ be a concave and continuous function on [0, +00) with ¢(0) = ¢(c) =0
for some positive constant ¢ > 0. Assume furthermore that ¢(t) < 0 for all t € (c,00). Suppose
that there exist two continuous functions f,g : [0,400) — [0,400) such that lim;_,4 o g(t)
exists and f(t) < fo ))ds for allt > 0. Under these conditions, we have lim;_,+~ g(t) < c.

Proof. Define the limit A := lim;_, 1 g(t), which exists according to the assumptions. We
proceed via proof by contradiction. In particular, suppose that A > ¢. Based on the definition
of A, for the positive constant ¢ = (A — ¢)/2 > 0, we can find a sufficiently large positive
constant 1" such that g(t) > A —¢ for any ¢ > T'. Since the function ¢ is concave, with ¢(c) =0
and ¢(t) < 0 for t > ¢, we have that ¢ is non-increasing on [c, +0), and therefore

d:=¢(c+e)=— sup ¢(s) <0

s>c+e

Therefore, for all t > T', we arrive at the following inequalities

0< f(t) /¢ )ds+/thS( ds</ (g(s))ds — 8(t — T).

By choosing t =1+ 7T + 6! fOT #(g(s))ds, the above inequality cannot hold. This yields the
desired contradiction, which completes the proof. |

C.3. A tail bound based on truncation. We now state an upper deviation inequality
based on a truncation argument. Consider a sequence of random variables {Y;}!" | satisfying
the moment bounds

(C.1) E[Y;]9] < (ag)® forall ¢ =1,2,...

where a, b are universal constants.
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C.4 Unique positive solution to equation (3.1) SM13

Lemma C.2. Given an i.i.d. sequence of zero-mean random variables {Y;}7 | satisfying the
moment bounds (C.1), we have

1< y [logd/d n\blog4/§
il > -] —— | <
P (n ;1:1@ > (4a) = (a log 5> —= ) <.

Proof. The proof of the lemma is a direct combination of truncation argument and
Bernstein’s inequality. In particular, for each i € [n], define the truncated random variable
Y; := Y;I[|Y;] < 3(alog %)°]. With this definition, we have

P ((Yz‘)?ﬂ - (?z')?:l) =P <maX Y[ >3 (a log Z)b>

1<i<n
n\b 1)
< . — < —.
< nP <|Yl| >3<a10g6) > =5

Therefore, it is sufficient to study a concentration behavior of the quantity > , Y;. Invoking
Bernstein’s inequality [SM2], we obtain that

P2l zn:f/ >e| <2 ne”
— > | <2exp| — .
n ’ 2(2a)? + %¢ - 3(alog %)

In order to make the RHS of the above inequality less than %, it suffices to set

log(4/6 blog(4/d
e = (40)" og(4/ )+(alogﬁ) 0g(4/9)
n )
Collecting all of the above inequalities yields the claim. |

C.4. Unique positive solution to equation (3.1). We now establish that equation (3.1)
has a unique positive solution under the stated assumptions. Define the function

B log(1
- z +d + log( /5))

n

ﬁ@wzw@—(dmaaw

Since ¥(0) = 0, we have ¥(0) < 0. On the other hand, based on Assumption (W.4),
liminf,_, o ¥(z) > 0. Therefore, there exists a positive solution to the equation ¥(z) = 0.
Recall that £ : Ry — R is an inverse function of the strictly increasing function z — z((2).
Therefore, we can write the function 9 as follows:
~ B&(r) +d+1og(1/6
9(2) = T(r) = 0(E() — e, o) — 2 S

n

where r = z - ((z). Given the convexity of function r ~— (£(r)) guaranteed by Assump-
tion (W.3), the functions ¥ and ¥ are convex. Putting the above results together, there exists
a unique positive solution to equation (3.1).
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