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Abstract. Linear fixed-point equations in Hilbert spaces arise in a variety of settings, 
including reinforcement learning, and computational methods for solving differential and 
integral equations. We study methods that use a collection of random observations to com
pute approximate solutions by searching over a known low-dimensional subspace of the 
Hilbert space. First, we prove an instance-dependent upper bound on the mean-squared 
error for a linear stochastic approximation scheme that exploits Polyak–Ruppert averaging. 
This bound consists of two terms: an approximation error term with an instance- 
dependent approximation factor and a statistical error term that captures the instance- 
specific complexity of the noise when projected onto the low-dimensional subspace. Using 
information-theoretic methods, we also establish lower bounds showing that both of these 
terms cannot be improved, again in an instance-dependent sense. A concrete consequence 
of our characterization is that the optimal approximation factor in this problem can be 
much larger than a universal constant. We show how our results precisely characterize the 
error of a class of temporal difference learning methods for the policy evaluation problem 
with linear function approximation, establishing their optimality.
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1. Introduction
Linear fixed-point equations over a Hilbert space, with the Euclidean space being an important special case, arise 
in various contexts. Such fixed-point equations take different names in different domains, including estimating 
equations, Bellman equations, Poisson equations, and inverse systems (Bertsekas [5], Krasnosel’skii et al. [31], 
Wooldridge [69]). More specifically, given a Hilbert space X, we consider a fixed-point equation of the form

v � Lv+ b, (1) 

where b is some member of the Hilbert space, and L is a linear operator mapping X to itself.
When the Hilbert space is infinite-dimensional—or has a finite but very large dimension D—it is common to 

seek approximate solutions to Equation (1). A standard approach is to choose a subspace S of the Hilbert space, 
of dimension d≪D, and to search for solutions within this subspace. In particular, letting ΠS denote the orthog
onal projection onto this subspace, various methods seek (approximate) solutions to the projected fixed-point equa
tion:

v �ΠS(Lv+ b): (2) 

In order to set the stage, let us consider some generic examples that illustrate the projected fixed-point equation 
(2). We eschew a fully rigorous exposition at this stage, deferring technical details and specific examples to Sec
tion 2.2.
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Example 1 (Galerkin Methods for Differential Equations). Let X be a Hilbert space of suitably differentiable func
tions, and let A be a linear differential operator of order k-say, of the form A(v) � ω0v+

Pk
j�1ωjv(j), where v(j)

denotes the jth-order derivative of the function v ∈ X. Given a function b ∈ X, suppose that we are interested in 
solving the differential equation A(v) � b. This represents a particular case of our fixed-point equation with 
L � I�A.

Let S be a finite-dimensional subspace of X-say, spanned by a set of basis functions {φj}
d
j�1. A Galerkin method 

constructs an approximate solution to the differential equation A(v) � b by solving the projected fixed-point 
equation (2) over a subspace of this type. Concretely, any function v ∈ S has a representation of the form v �
Pd

j�1ϑjφj for some weight vector ϑ ∈ Rd. Applying the operator A to any such function yields the residual 

A(v) �
Pd

j�1 ϑjA(φj), and the Galerkin method chooses the weight vector ϑ ∈ Rd such that v satisfies the equation 
v �ΠS((I�A)v+ b). In Section 2.2.2, we describe in detail a specific version of the Galerkin method as applied to 
a second-order differential equation that underlies the so-called elliptic boundary value problem.

Example 2 (Instrumental Variable Methods for Nonparametric Regression). Let X denote a suitably constrained 
space of square-integrable functions mapping Rp→ R, and suppose that we have a regression model of the form 
Y � f ∗(X) + ɛ. Here, X is a random vector of covariates taking values in Rp, the pair (Y,ɛ) denotes scalar random 
variables, and f ∗ ∈ X denotes an unknown function of interest. For a discussion of the existence and uniqueness 
of the various objects in this model, see Darolles et al. [20].

In the classical setup of nonparametric regression, it is assumed that E[ɛ | X] � 0, an assumption that can be 
violated. Instead, suppose that we have a vector of instrumental variables Z ∈ Rp such that E[ɛ|Z] � 0. Now let T :

X→ X denote a linear operator given by T(f ) � E[f (X)|Z], and denote by r � E[Y|Z] a point in X. Instrumental 
variable (IV) approaches to estimating f ∗ are based on the equality

E[Y� f ∗(X) | Z] � r�T(f ∗) � 0, (3) 

which is a linear fixed-point relation of the form (1) with L � I�T and b � r.
Now let {φj}j≥1 be an orthonormal basis of X, and let S denote the subspace spanned by the first d such eigen

functions. Then each function f ∈ S can be represented as f �
Pd

j�1ϑjφj, and approximate solutions to the fixed- 
point equation (3) may be obtained via solving a projected variant (2) (i.e., the equation f �ΠS((I�T)f + r)).

A specific example of an IV method is the class of temporal difference methods for policy evaluation, intro
duced and discussed in detail in Section 2.2.3.

In particular instantiations of both Examples 1 and 2, it is typical for the ambient dimension D to be very large 
(if not infinite) and for us to only have sample access to the pair (L, b). This paper treats the setting in which n 
observations {(Li, bi)}

n
i�1 are drawn independent and identically distributed (i:i:d:) from some distribution with 

mean (L, b). Letting v∗ denote the solution to the fixed-point equation (1), our goal is to use these observations to 
produce an estimate v̂n of v∗ that satisfies an oracle inequality of the form

E||v̂n � v∗||2 ≤ α · inf
v∈S
||v� v∗||2 + εn: (4) 

Here, we use || · || to denote the Hilbert norm associated with X. The three terms appearing on the right-hand side 
of Inequality (4) all have concrete interpretations. The term

A(S, v∗) :� inf
v∈S
||v� v∗||2 (5) 

defines the approximation error; this is the error incurred by an oracle procedure that knows the fixed point v∗ in 
advance and aims to output the best approximation to v∗ within the subspace S. The term α is the approximation 
factor, which indicates how poorly the estimator v̂n performs at carrying out the aforementioned approximation; 
note that α ≥ 1 by definition, and it is most desirable for α to be as small as possible. The final term εn is a proxy 
for the statistical error incurred as a result of our stochastic observation model; indeed, one expects that as the 
sample size n goes to infinity, this error should tend to zero for any reasonable estimator, indicating consistent 
estimation when v∗ ∈ S. More generally, we would like our estimator to also have as small a statistical error as 
possible in terms of the other parameters that define the problem instance.

In an ideal world, both desiderata hold simultaneously: the approximation factor should be as close to 1 as 
possible while the statistical error stays as small as possible. As we discuss shortly, such a “best-of-both-worlds” 
guarantee can indeed be obtained in many canonical problems, and “sharp” oracle inequalities—meaning ones 
in which the approximation factor is equal to 1—are known (Dalalyan and Salmon [18], Rakhlin et al. [50]). On 
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the other hand, such oracle equalities with unit factors are not known for the fixed-point equation (1). Tsitsiklis 
and Van Roy [60] show that if the operator L is γmax-contractive in the norm || · ||, then the (deterministic) solution 
v to the projected fixed-point equation (2) satisfies the bound

||v� v∗||2 ≤ 1
1� γ2

max
inf
v∈S
||v� v∗||2: (6) 

Because γmax can be arbitrarily close to 1, the prefactor in the bound (6) can be much larger than 1, in contrast to 
so-called sharp oracle inequalities for nonparametric regression. One motivating question for our work is 
whether this bound can be improved and, if so, to what extent.1

Our work is also driven by the complementary question of whether a sharp bound can be obtained on the sta
tistical error of an estimator that, unlike v, has access only to the samples {(Li, bi)}

n
i�1. In particular, we would like 

the statistical error εn to depend on some notion of complexity within the subspace S and not on the ambient 
space. Recent work by Bhandari et al. [8] provides worst-case bounds on the statistical error of a stochastic 
approximation scheme, showing that the parametric rate ɛn ≲d=n is attainable. In this paper, we study how to 
derive a more fine-grained bound on the statistical error that reflects the practical performance of the algorithm 
and depends optimally on the geometry of our problem instance.

1.1. Contributions and Organization
The main contribution of this paper is to resolve both of the aforementioned questions, in particular by deriving 
upper bounds and information-theoretic lower bounds on both the approximation factor and statistical error that 
are instance dependent. On one hand, these bounds demonstrate that, in general, it is not possible to obtain an ora
cle inequality with a prefactor equal to 1 but that there are many settings in which the optimal approximation 
factor is much smaller than what is suggested by the worst-case bound (6). We also derive a significantly sharper 
bound on the statistical error of a stochastic approximation scheme that is instance optimal in a precise sense. In 
more detail, the contributions of this paper include the following: 
• Theorem 1 establishes an instance-dependent upper bound of the form (4) for the Polyak–Ruppert averaged 

stochastic approximation estimator, whose approximation factor α depends in a precise way on the projection of 
the operator L onto the subspace S, and the statistical error ɛn matches the Cramér–Rao lower bound for the 
instance within the subspace.
• In Theorem 2, we prove an information-theoretic lower bound on the approximation factor. It is a local analy

sis, in that the bound depends critically on the projection of the population-level operator. This lower bound certi
fies that the approximation factor attained by our estimator is optimal. To the best of our knowledge, this is also the 
first instance of an optimal oracle inequality with a nonconstant and problem-dependent approximation factor.
• In Theorem 3, we establish via a Bayesian Cramér–Rao lower bound that the leading statistical error term for 

our estimator is also optimal in an instance-dependent sense.
• In Section 4, we derive specific consequences of our results for several examples, including the problem of 

Galerkin approximation in second-order elliptic equations, as well as temporal difference methods for policy evalu
ation with linear function approximation. A particular consequence of our results shows that in a minimax sense, 
the approximation factor (6) is optimal for a policy evaluation with linear function approximation (cf. Proposition 1).

The remainder of this paper is organized as follows. Section 1.2 contains a detailed discussion of related work. 
We introduce formal background and specific examples in Section 2. Our main results under the general model 
of projected fixed-point equations are introduced and discussed in Section 3. We then specialize these results to 
our examples in Section 4, deriving several concrete corollaries for Galerkin methods and temporal difference 
methods. Our proofs are presented in Section 5, and technical results are relegated to the appendix in the online 
supplementary file.

1.2. Related Work
Our paper touches on various lines of related work, including stochastic approximation and its application to 
reinforcement learning, projected linear equation methods, as well as oracle inequalities for statistical estimation. 
Let us provide a brief discussion of these connections here.

1.2.1. Stochastic Approximation. Stochastic approximation algorithms for both linear and nonlinear fixed-point 
equations play a central role in large-scale machine learning and statistics (Lai [32], Nemirovski et al. [43], Rob
bins and Sutton [52]). See the books by Benveniste et al. [4] and Borkar [9] for a comprehensive survey of the clas
sical methods of analysis. In the seminal work of Polyak, Ruppert, and Juditsky (Polyak [46], Polyak and 
Juditsky [47], Ruppert [54]), the authors proposed taking the average of the stochastic approximation iterates, 
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which stabilizes the algorithm and ensures a Gaussian limiting distribution. In fact, the averaged iterates are 
known to be asymptotically optimal in a local minimax sense (Duchi and Ruan [21]). Nonasymptotic guarantees 
matching this asymptotic behavior have also been established for other forms of stochastic approximation, as 
well as variance-reduced variants thereof (Khamaru et al. [26], Li et al. [36], Mou et al. [40], Moulines and 
Bach [41]).

Stochastic approximation is also a fundamental building block for reinforcement learning algorithms, wherein 
the method is used to produce an iterative, online solution to the Bellman equation from data; see the books by 
Szepesvári [59] and Bertsekas [7] for a survey. Such approaches include temporal difference (TD) methods (Sut
ton [57]) for the policy evaluation problem and the Q-learning algorithm (Watkins and Dayan [68]) for policy 
optimization. Variants of these algorithms also abound, including least squares temporal difference (LSTD) 
(Boyan [11]), state–action–reward–state–action (SARSA; Rummery and Niranjan [53]), actor-critic algorithms 
(Konda and Tsitsiklis [30]), and gradient TD methods (Sutton et al. [58]). The analysis of these methods has 
received significant attention in the literature, ranging from asymptotic guarantees (e.g., Bradtke and Barto [12], 
Tsitsiklis and Van Roy [60, 61]) to more fine-grained finite-sample bounds (e.g., Bhandari et al. [8], Lakshminar
ayanan and Szepesvári [33], Pananjady and Wainwright [45], Srikant and Ying [56], Wainwright [66, 67]). Our 
work contributes to this literature, because as a corollary of our general analysis, we are able to establish finite- 
sample upper bounds for temporal difference methods with Polyak–Ruppert averaging, as applied to the policy 
evaluation problem with linear function approximation.

1.2.2. Projected Methods for Linear Equations. In 1915, Galerkin [23] first proposed the method of approximat
ing the solution to a linear partial differential equation (PDE) by solving the projected equation in a finite- 
dimensional subspace. This method later became a cornerstone of finite-element methods in numerical methods 
for PDEs; see the chapter by Fletcher [22] and the book by Brenner and Scott [13] for a comprehensive survey. A 
fundamental tool used in the analysis of Galerkin methods is Céa’s lemma (Céa [16]); in this paper, we derive 
more general upper bounds on the approximation factor that capture this classical lemma as a special case. As 
mentioned before, in the specific context of reinforcement learning, projected linear equations were studied by 
Tsitsiklis and Van Roy [60], who first proved the upper bound (6) on the approximation factor under contractiv
ity assumptions. These contraction-based bounds were further extended to the analysis of Q-learning in optimal 
stopping problems (Tsitsiklis and Van Roy [61]). The connection between the Galerkin method and TD methods 
was observed by Yu and Bertsekas [71] and Bertsekas [5], and the former paper provides an instance-dependent 
upper bound on the approximation factor. This analysis was later applied to Monte Carlo methods for solving 
linear inverse problems (Polydorides et al. [48, 49]).

The Bellman equation can be written in infinitely many equivalent ways—by using powers of the transition 
kernel and via the formalism of resolvents—leading to a continuous family of projected equations indexed by a 
scalar parameter λ (see, e.g., section 5.5 of Bertsekas [7]). Some of these forms can be specifically leveraged in 
other observation models; for instance, by observing the trajectory of the Markov chain instead of i.i.d. samples, 
it becomes possible to obtain unbiased observations for integer powers of the transition kernel. This makes it pos
sible to efficiently estimate the solution to the projected linear equation for various values of λ, and it underlies 
the family of TD(λ) methods (Boyan [11], Sutton [57]). Indeed, Tsitsiklis and Van Roy [60] also showed that the 
worst-case approximation factor in Equation (6) can be improved by using larger values of λ. Based on this 
observation, a line of work has studied the trade-off between the approximation error and estimation measure in 
model selection for reinforcement learning problems (Bertsekas [6], Munos and Szepesvári [42], Scherrer [55], 
Van Roy [64]). Understanding precise trade-offs between the approximation and estimation error is crucial to 
model selection. However, unlike this body of work, our focus in the current paper is on studying the i.i.d. obser
vation model; a detailed investigation into the Markov setting is an important direction for future work.

1.2.3. Oracle Inequalities. There is a large literature on misspecified statistical models and oracle inequalities 
(e.g., see the monographs by Massart [38] and Koltchinskii [29] for overviews). Oracle inequalities in the context 
of penalized empirical risk minimization (ERM) are quite well understood (e.g., Bartlett et al. [2], Koltchinskii 
[28], and Massart and Nédélec [39]). Typically, the resulting approximation factor is exactly 1 or arbitrarily close 
to 1, and the statistical error term depends on the localized Rademacher complexity or metric entropy of this 
function class. Aggregation methods have been developed in order to obtain sharp oracle inequalities with 
approximation factor exactly 1 (e.g., Bunea et al. [14], Dalalyan and Salmon [18], Rakhlin et al. [50], and Tsybakov 
[62]). Sharp oracle inequalities are now available in a variety of settings, including for sparse linear models 
(Bunea et al. [15]), density estimation (Dalalyan and Sebbar [19]), graphon estimation (Klopp et al. [27]), and 
shape-constrained estimation (Bellec [3]). As previously noted, our setting differs qualitatively from the ERM 
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setting in that, as shown in this paper, sharp oracle inequalities are no longer possible. There is another related 
line of work on oracle inequalities of density estimation. Yatracos [70] showed an oracle inequality with the non
standard approximation factor 3 and with a statistical error term depending on the metric entropy. This non-unit 
approximation factor was later shown to be optimal for the class of one-dimensional piecewise constant densities 
(Bousquet et al. [10], Chan et al. [17], Zhu et al. [72]). The approximation factor lower bound in these papers and 
that in our work both make use of the birthday paradox to establish information-theoretic lower bounds.

1.3. Notation
Here, we summarize some notation used throughout the paper. For a positive integer m, we define the set 
[m] :� {1, 2, : : : , m}. For any pair (X,Y) of real Hilbert spaces and a linear operator A : X→ Y, we denote by A∗ :

Y→ X the adjoint operator of A, which, by definition, satisfies 〈Ax, y〉 � 〈x, A∗y〉 for all (x, y) ∈ X × Y. For a 
bounded linear operator A from X to Y, we define its operator norm as |||A|||X→Y :� supx∈X\{0}

||Ax||Y
||x||X

. We use the 
shorthand notation |||A|||X to denote its operator norm when A is a bounded linear operator mapping X to itself. 
When X � Rd1 and Y � Rd2 are finite-dimensional Euclidean spaces equipped with the standard inner product, 
we denote by |||A|||op the operator norm in this case. We also use || · ||2 to denote the standard Euclidean norm, in 
order to distinguish it from the Hilbert norm || · ||.

For a random object X, we use L(X) to denote its probability law. Given a vector µ ∈ Rd and a positive semide
finite matrix Σ ∈ Rd×d, we use N (µ,Σ) to denote the Gaussian distribution with mean µ and covariance Σ. We use 
U(Ω) to denote the uniform distribution over a set Ω. Given a Polish space S and a positive measure µ associated 
to its Borel σ-algebra, for p ∈ [1, +∞), we define Lp(S,µ) :� {f : S→ R, ||f ||Lp :� (

R

S
|f |pdµ)1=p

< +∞}. When S is a 
subset of Rd and µ is the Lebesgue measure, we use the shorthand notation Lp(S). For a point x ∈ Rd, we use δx to 
denote the Dirac δ-function at point x.

We use {ej}
d
j�1 to denote the standard basis vectors in the Euclidean space Rd (i.e., ei is a vector with a 1 in the 

ith coordinate and 0s elsewhere). For two matrices A ∈ Rd1×d2 and B ∈ Rd3×d4 , we denote by A⊗B their Kronecker 
product, a d1d3 × d2d4 real matrix. For symmetric matrices A, B ∈ Rd×d, we use A≼B to denote the fact B – A is a 
positive semidefinite matrix and use A ⋏ B when B – A is positive definite. For a positive integer d and indices 
i, j ∈ [d], we denote by Eij a d × d matrix with a 1 in the (i, j) position and 0s elsewhere. More generally, given a set 
S and s1, s2, ∈ S, we define Es1,s2 to be the linear operator such that Es1,s2 f (x) :� f (s2)1x�s1 for all f : S→ R.

2. Background
We begin by formulating the projected fixed-point problem more precisely in Section 2.1. Section 2.2 provides 
illustrations of this general setup with some concrete examples.

2.1. Problem Formulation
Consider a separable Hilbert space X with (possibly infinite) dimension D, equipped with the inner product 
〈 · , · 〉. Let L denote the set of all bounded linear operators mapping X to itself. Given one such operator L ∈ L 

and some b ∈ X, we consider the fixed-point relation v � Lv+ b, as previously defined in Equation (1). We assume 
that the operator I – L has a bounded inverse, which guarantees the existence and uniqueness of the fixed point 
satisfying Equation (1). We let v∗ denote this unique solution.

As previously noted, in general, solving a fixed-point equation in the Hilbert space can be computationally 
challenging. Consequently, a natural approach is to seek approximations to the fixed point v∗ based on searching 
over a finite-dimensional subspace of the full Hilbert space. More precisely, given some d-dimensional subspace 
S of X, we seek to solve the projected fixed-point Equation (2).
2.1.1. Existence and Uniqueness of a Projected Fixed Point. For concreteness in analysis, we are interested in 
problems for which the projected fixed-point equation has a unique solution. Here, we provide a sufficient condi
tion for such existence and uniqueness. In doing so, and for future reference, it is helpful to define some map
pings between X and the subspace S. Let us fix some orthogonal basis {φj}j≥1 of the full space X such that 
S � span {φ1, : : : ,φd}. In terms of this basis, we can define the projection operator Φd : X→ Rd via 
Φd(x) :� (〈x,φj〉)

d
j�1. The adjoint operator of Φd is a mapping from Rd to X, given by

Φd(v) :�
Xd

j�1
vjφj: (7) 
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Using these operators, we can define the projected operator associated with L—namely,
M :� ΦdLΦ∗d: (8) 

Note that M is simply a d-dimensional matrix, one that describes the action of L on S according to the basis that 
we have chosen. As we will see in the main theorems, our results do not depend on the specific choice of the 
orthonormal basis, but it is convenient to use a given one, as we have done here.

Consider the quantity

κ(M) :�
1
2λmax(M +M⊤), (9) 

which corresponds to the maximal eigenvalue of the symmetrized version of M. One sufficient condition for 
there be a unique solution to the fixed-point equation (2) is the bound κ(M) < 1. When this bound holds, the 
matrix (Id�M) is invertible, and hence for any b ∈ X, there is a unique solution v to the equation v �ΠS(Lv+ b).

2.1.2. Stochastic Observation Model. As noted in the introduction, this paper focuses on an observation model 
in which we observe i.i.d. random pairs (Li, bi) for i � 1, : : : , n that are unbiased estimates of the pair (L, b) so that

E[Li] � L, and E[bi] � b: (10) 

In addition to this unbiasedness, we also assume that our observations satisfy a certain second-moment bound. 
A weaker version and a stronger version of this assumption are both considered.

Assumption 1A (Second-Moment Bound in Projected Space (Weak)). There exist scalars σL,σb > 0 such that for any 
unit-norm vector u ∈ S and any basis vector in {φj}

d
j�1 we have the bounds

E〈φj, (Li � L)u〉2 ≤ σ2
L||u||

2, and (11a) 

E〈φj, bi� b〉2 ≤ σ2
b: (11b) 

Assumption 1B (Second-Moment Bound in Ambient Space (Strong)). There exist scalars σL,σb > 0 such that for any 
unit-norm vector u ∈ X and any basis vector in {φj}

D
j�1 we have the bounds

E〈φj, (Li � L)u〉2 ≤ σ2
L||u||

2, and (12a) 

E〈φj, bi� b〉2 ≤ σ2
b: (12b) 

In other words, Assumption 1A guarantees that the random variable obtained by projecting the “noise” onto any 
of the basis vectors φ1, : : : ,φd in the subspace S has a bounded second moment. Assumption 1B further requires 
the projected noise onto any basis vector of the entire space X to have a bounded second moment. In Section 4, 
we show that there are various settings—including Galerkin methods and temporal difference methods—for 
which at least one of these assumptions is satisfied.

2.2. Examples
We now present some concrete examples to illustrate our general formulation. In particular, we discuss the pro
blems of linear regression, temporal difference learning methods from reinforcement learning,2 and Galerkin 
methods for solving partial differential equations.

2.2.1. Linear Regression on a Low-Dimensional Subspace. Our first example is the linear regression model 
when true parameter is known to lie approximately in a low-dimensional subspace. This example, although 
rather simple, provides a useful pedagogical starting point for the others to follow.

For this example, the underlying Hilbert space X from our general formulation is simply the Euclidean space 
RD, equipped with the standard inner product 〈 · , · 〉. We consider zero-mean covariates X ∈ RD and a response 
Y ∈ R, and our goal is to estimate the best-fitting linear model x ⊢→ 〈v, x〉. In particular, the mean-square optimal 
fit is given by v∗ :� arg minv∈RDE(Y� 〈v, X〉)2. From standard results on linear regression, this vector must satisfy 
the normal equations E[XX⊤]v∗ � E[YX]. We assume that the second-moment matrix E[XX⊤] is nonsingular so 
that v∗ is unique.
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Let us rewrite the normal equations in a form consistent with our problem formulation. An equivalent defini
tion of v∗ is in terms of the fixed-point relation

v∗ � I� 1
β
E[XX⊤]

� �

v∗ + 1
β
E[YX], (13) 

where β :� λmax(E[XX⊤]) is the maximum eigenvalue. This fixed-point condition is a special case of our general 
equation (1) with the operator L � I� β�1E[XX⊤] and vector b � β�1E[YX]. Note that we have

|||L|||op �

�
�
�
�

�
�
�
�

�
�
�
�I�

1
β
E[XX⊤]

�
�
�
�

�
�
�
�

�
�
�
�
op
≤ 1�µ

β
< 1, 

where µ � λmin(E[XX⊤]) > 0 is the minimum eigenvalue of the covariance matrix.
In the well-specified setting of linear regression, we observe i.i.d. pairs (Xi, Yi) ∈ RD × R that are linked by the 

standard linear model
Yi � 〈v∗, Xi〉 + εi for i � 1, 2, : : : , n, (14) 

where εi denotes zero-mean noise with a finite second moment. Each such observation can be used to form the 
matrix-vector pair

Li � I� β�1XiX⊤i , and bi � β
�1XiYi, 

which is in the form of our assumed observation model.
Thus far, we have simply reformulated linear regression as a fixed-point problem. In order to bring in the pro

jected aspect of the problem, let us suppose that the ambient dimension D is much larger than the sample size n 
but that we have the prior knowledge that v∗ lies (approximately) within a known subspace S of RD-say, of 
dimension d≪D. Our goal is then to approximate the solution to the associated projected fixed-point equation.

Using {φj}
d
j�1 to denote an orthonormal basis of S, the population-level projected linear equation (2) in this case 

takes the form
E[(ΠSX)(ΠSX)⊤]v � E[Y ·ΠSX]: (15) 

Thus, the population-level projected problem (15) corresponds to performing linear regression using the pro
jected version of the covariates, thereby obtaining a vector of weights v ∈ S in this low-dimensional space.

2.2.2. Galerkin Methods for Second-Order Elliptic Equations. We now turn to the Galerkin method for solving 
differential equations, a technique briefly described in Section 1. The general problem is to compute an approxi
mate solution to a partial differential equation based on a limited number of noisy observations for the coeffi
cients. Stochastic inverse problems of this type arise in various scientific and engineering applications (Arridge 
et al. [1], Nickl [44]).

For concreteness, we consider a second-order elliptic equation with Dirichlet boundary conditions.3 Given a 
bounded, connected, and open set Ω ⊆ Rm with unit Lebesgue measure, let ∂Ω denote its boundary. Consider 
the Hilbert space of functions

X :� Ḣ1
(Ω) �

�

v : Ω→ R,
Z

Ω

||∇v(x)||22dx <∞, v|∂Ω � 0
�

, 

equipped with the inner product 〈u, v〉Ḣ1 :�
R

Ω
∇u(x)⊤∇v(x)dx.

Given a symmetric matrix-valued function a and a square-integrable function f ∈ L2, the boundary-value problem 
is to find a function v : Ω→ R such that

∇ · (a(x)∇v(x)) + f � 0 in Ω,
v(x) � 0 on ∂Ω:

�

(16) 

We impose a form of uniform ellipticity by requiring that µIm ≼ a(x)≼βIm for some positive scalars µ ≤ β, valid 
uniformly over x.

The problem can be equivalently stated in terms of the elliptic operator A :��∇ · (a∇); as shown in Appendix 
H.3.1 in the online supplementary file, the pair (A, f) induces a bounded, self-adjoint linear operator Ã on X and a 
function g ∈ X such that the solution to the boundary value problem can be written as

v∗ � I� 1
β

Ã
� �

v∗ + β�1g: (17) 
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By construction, this is now an instance of our general fixed-point equation (1) with L :� I� β�1Ã and b :� β�1g. 
Furthermore, our assumptions imply that |||L|||X ≤ 1�µ=β.

We consider a stochastic observation model that is standard in the literature (see, e.g., the paper by Giordano 
and Nickl [24]). Independently for each i ∈ [n], let Wi denote an m ×m symmetric random matrix with entries on 
the diagonal and upper diagonal given by i.i.d. standard Gaussian random variables. Let w′i ~ N (0, 1) denote a 
standard Gaussian random variable. Suppose now that we observe the pair xi, yi ~ U(Ω); the observed values for 
the ith sample are then given by

(ai, fi) :� (a(xi) +Wi, f (yi) +w′i ) with xi, yi ~ U(Ω): (18) 

The unbiased observations (Li, bi) can then be constructed by replacing (a, f) with (aiδxi , fiδyi) in the above- 
mentioned constructions.

For such problems, the finite-dimensional projection not only serves as a fast and cheap way to compute solu
tions from simulation (Lung et al. [37]) but also makes the solution stable and robust to noise (Kaltenbacher et al. 
[25]). Given a finite-dimensional linear subspace S ⊆ X spanned by orthogonal basis functions (φi)

d
i�1, we con

sider the projected version of Equation (17), with the solution denoted by v:
v �ΠS(Lv + b): (19) 

Straightforward calculation in conjunction with Lemma 9 shows that Equation (19) is equivalent to the condi
tions v ∈ S, and

〈Ãv,φj〉Ḣ1 � 〈g,φj〉Ḣ1 for all j ∈ [d], (20) 

with the latter equality better known in the literature as the Galerkin orthogonality condition (Brenner and Scott 
[13]).

2.2.3. Temporal Difference Methods for Policy Evaluation. Our final example involves the policy evaluation 
problem in reinforcement learning. This is a special case of an instrumental variable method, as briefly intro
duced in Section 1. We require some additional terminology to describe the problem of policy evaluation. Con
sider a Markov chain on a state space S and a transition kernel P : S × S→ R. It becomes a discounted Markov 
reward process when we introduce a reward function r : S→ R and discount factor γ ∈ (0, 1). The goal of the pol
icy evaluation problem is to estimate the value function, which is the expected, long-term, discounted reward 
accrued by running the process. The value function exists under mild assumptions such as boundedness of the 
reward and is given by the solution to the Bellman equation v∗ � γPv∗ + r, which is a fixed-point equation of the 
form (1) with L � γP and b � r.

Throughout our discussion, we assume that the transition kernel P is ergodic and aperiodic so that its station
ary distribution ξ is unique. We define X to be the Hilbert space L2(S,ξ), and for any pair of vectors v, v′ ∈ X, we 
define the inner product as follows:

〈v, v′〉 :�

Z

S

v(s)v′(s)dξ(s):

In the special case of a finite state space, the Hilbert space X is a finite-dimensional Euclidean space with dimen
sion D � |S| and equipped with a weighted ℓ2-norm.

We consider the i.i.d. observation model in this paper. For each i � 1, 2, : : : , n, suppose that we observe an inde
pendent tuple (si, s+i , Ri(si)) such that

si ~ ξ, s+i ~ P(si, ·) and E[Ri(si)|si] � r(si): (21) 

The ith observation (Li, bi) is then obtained by plugging in these two observations to compute unbiased estimates 
of P and r, respectively.

A common practice in reinforcement learning is to employ function approximation, which in its simplest form 
involves solving a projected linear equation on a subspace. In particular, consider a set {ψ1,ψ2, : : : ,ψd} of basis 
functions in X, and suppose that they are linearly independent on the support of ξ. We are interested in projec
tions onto the subspace S � span(ψ1, : : : ,ψd) and in solving the population-level projected fixed-point equation 
(2), which takes the form

v �ΠS(γPv + r): (22) 

The basis functions ψi are not necessarily orthogonal, and it is common for the projection operation to be carried 
out in a somewhat nonstandard fashion. In order to describe this, it is convenient to write Equation (22) in the 
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projected space. For each s ∈ S, let ψ(s) � [ψ1(s)ψ2(s): : : ψd(s)] denote a vector in Rd, and note that we may write 
v(s) � ψ(s)⊤ϑ for a vector of coefficients ϑ ∈ Rd. Now observe that Equation (22) can be equivalently written in 
terms of the coefficient vector ϑ as

Es~ξ[ψ(s)ψ(s)⊤]ϑ � γEs~ξ[Es+~P(s,·)[ψ(s)ψ(s+)⊤]]ϑ +Es~ξ[r(s)ψ(s)]: (23) 

Equation (23) is the population relation underlying the canonical least squares temporal difference learning method 
(Boyan [11], Bradtke and Barto [12]).

3. Main Results for General Projected Linear Equations
Having set up the problem and illustrating it with some examples, we now turn to the statements of our main 
results. We begin in Section 3.1 by stating an upper bound on the mean-squared error of a stochastic approxima
tion scheme that uses Polyak–Ruppert averaging. We then discuss the form of this upper bound for various clas
ses of operator L, with a specific focus on producing transparent bounds on the approximation factor. Section 3.2
is devoted to information-theoretic lower bounds that establish the sharpness of our upper bound.

3.1. Upper Bounds
In this section, we describe a standard stochastic approximation scheme for the problem based on combining 
ordinary stochastic updates with Polyak–Ruppert averaging (Polyak [46], Polyak and Juditsky [47], Ruppert 
[54]). In particular, given an oracle that provides observations (Li, bi), consider the stochastic recursion parameter
ized by a positive stepsize η:

vt+1 � (1� η)vt + ηΠS(Lt+1vt + bt+1), for t � 1, 2, : : : : (24a) 

This is a standard stochastic approximation scheme for attempting to solve the projected fixed-point relation. In 
order to improve it, we use the standard device of applying Polyak–Ruppert averaging so as to obtain our final 
estimate. For a given sample size n ≥ 2, our final estimate v̂n is given by taking the average of these iterates from 
time n0 to n—that is,

v̂n :�
1

n� n0

Xn

t�n0+1
vt: (24b) 

Here, the “burn-in” time n0 is an integer parameter to be specified.
The stochastic approximation procedure (24) is defined in the entire space X; note that it can be equivalently 

written as iterates in the projected space Rd via the recursion
ϑt+1 � (1� η)ϑt + η(ΦdLt+1Φ

∗
dϑt +Φdbt+1): (25) 

The original iterates can be recovered by applying the adjoint operator—that is, vt � Φ
∗
dϑt for t � 1, 2, : : : .

3.1.1. A Finite-Sample Upper Bound. Having introduced the algorithm itself, we are now ready to provide a 
guarantee on its error. Two matrices play a key role in the statement of our upper bound. The first is the d-dimen
sional matrix M :�ΦdLΦ∗d that we introduced in Section 2.1. We show that the mean-squared error is upper 
bounded by the approximation error infv∈S||v� v∗||2 along with a prefactor of the form

α(M, s) � 1+λmax((I�M)�1
(s2 Id�MMT)(I�M)�T

) (26) 

for s � |||L|||op. Our bounds also involve the quantity κ(M) � λmax(M+MT)=2, which we abbreviate as κ when the 
underlying matrix M is clear from the context.

The second matrix is a covariance matrix, capturing the noise structure of our observations, given by
Σ∗ :� cov(Φd(b1 � b) +Φd(L1 � L)v):

This matrix, along with the constants (σL,σb) from Assumption 1A, arises in the definition of two additional error 
terms:

En(M,Σ∗) :� trace((I�M)�1Σ∗(I�M)�⊤)
n

, and (27a) 

Hn(σL,σb, v) :� σL

(1� κ)3
d
n

� �3=2
(||v||2σ2

L + σ
2
b): (27b) 
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As suggested by our notation, the error Hn(σL,σb, v) is a higher-order term, decaying as n�3=2 in the sample size, 
whereas the quantity En(M,Σ∗) is the dominant source of statistical error. With this notation, we have the 
following.

Theorem 1. Suppose that we are given n i.i.d. observations {(Li, bi)}
n
i�1 that satisfy the noise conditions in Assumption 1A. 

Then there are universal constants (c0, c) such that for any sample size n ≥ c0σ2
Ld

(1�κ)2
log2 ||v0�v ||2d

1�κ

� �
, running the algorithm (24) 

with
step size η � 1

c0σL
ffiffiffiffiffiffi
dn
√ and burn-in period n0 � n=2 

yields an estimate v̂n such that

E||v̂n � v∗||2 ≤ (1+ω) ·α(M, |||L|||X) inf
v∈S
||v� v∗||2 + c 1+ 1

ω

� �

· En(M,Σ∗) +Hn(σL,σb, v){ }, (28) 

valid for any ω > 0.

We prove this theorem in Section 5.1.
A few comments are in order. First, the quantity α(M, |||L|||X)infv∈S||v� v∗||2 is an upper bound on the approxi

mation error ||v� v∗||2 incurred by the (deterministic) projected fixed point v. The prefactor α(M, |||L|||X) ≥ 1 mea
sures the instance-specific deficiency of v relative to an optimal approximating vector from the subspace, and we 
provide a more in-depth discussion of this factor in Section 3.1.2 to follow. Note that Theorem 1 actually provides 
a family of bounds, indexed by the free parameter ω > 0. By choosing ω arbitrarily close to 0, we can make the 
prefactor in front of infv∈S||v� v∗||2 arbitrarily close to α(M, |||L|||X)—albeit at the expense of inflating the remain
ing error terms. In Theorem 2 to follow, we prove that the quantity α(M, |||L|||X) is, in fact, the smallest approxi
mation factor that can be obtained in any such bound.

The latter two terms in the bound (28) correspond to estimation error that arises from estimating v based on a 
set of n stochastic observations. Although there are two terms here in principle, we show in Corollary 1 to follow 
that the estimation error is dominated by the term En(M,Σ∗) under some natural assumptions. Note that the lead
ing term En(M,Σ∗) scales with the local complexity for estimating v, and we show in Theorem 3 that this term is 
also information-theoretically optimal. In Appendix I.2 in the online supplementary file, we perform additional 
simulation studies on the statistical error terms, showing that the actual performance of Polyak–Ruppert averag
ing estimator is accurately characterized by the instance-dependent analysis.

In the next subsection, we undertake a more in-depth exploration of the approximation factor in this problem, 
discussing prior work in the context of the term α(M, |||L|||X) appearing in Theorem 1.

3.1.2. Detailed Discussion of the Approximation Error. As mentioned in the introduction, upper bounds on the 
approximation factor have received significant attention in the literature, and it is interesting to compare 
our bounds.

3.1.2.1. Past Results. In the case where γmax :� |||L|||X < 1, the approximation-factor bound (6) was established 
by Tsitsiklis and Van Roy [60], via the following argument. Letting ṽ :�ΠS(Lv∗ + b), we have

||v� v∗||2�(i) ||v� ṽ||2 + ||ṽ� v∗||2 � ||ΠS(Lv + b)�ΠS(Lv∗ + b)||2 + ||ṽ� v∗||2

≤
(ii)
||Lv� Lv∗||2 + ||ṽ� v∗||2

≤
(iii)
γ2

max||v� v∗||2 + ||ṽ� v∗||2: (29) 

Step (i) uses the Pythagorean theorem, step (ii) follows from the nonexpansiveness of the projection operator, 
and step (iii) makes use of the contraction property of the operator L. Note that, by definition, we have 
α(M, |||L|||X) ≤ (1� |||L|||X)

�2, and so the approximation factor in Theorem 1 recovers the bound (6) in the worst 
case. In general, however, the factor α(M, |||L|||X) can be significantly smaller. See Lemmas 1 and 2 to follow.

Yu and Bertsekas [71] derived two finer-grained upper bounds on the approximation factor; in terms of our 
notation, their bounds take the form

α(1)YB :� 1 + |||L|||2X · λmax((I �M)�1
(I �M)�⊤),

α(2)YB :� 1 + |||(I �ΠSL)�1ΠSLΠS⊥ |||
2
X:
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It is clear from the definition that α(M, |||L|||X) ≤ α
(1)
YB, but α(M, |||L|||X) can often provide an improved bound. This 

improvement is indeed significant, as will be shown shortly in Lemma 1. On the other hand, the term α(2)YB is 
never larger than α(M, |||L|||X), and it is indeed the smallest possible bound that depends only on L and not b. 
However, as pointed out by Yu and Bertsekas, the value of α(2)YB is not easily accessible in practice, because it 
depends on the precise behavior of the operator L over the orthogonal complement S⊥. Thus, estimating the 
quantity α(2)YB requires O(D) samples. By contrast, the term α(M, |||L|||X) depends only on the projected operator M 
and the operator norm |||L|||X. The former can be easily estimated using d samples and at smaller computational 
cost, whereas the latter is usually known a priori. The discussion in Section 4 fleshes out these distinctions.

3.1.2.2. A Simulation Study. In order to compare different upper bounds on the approximation factor, we con
ducted a simple simulation study on the problem of value function estimation, as previously introduced in Sec
tion 2.2.3. For this problem, the approximation factor α(M,γ) is computed more explicitly in Corollary 5. The 
Markov transition kernel is given by the simple random walk on a graph. We consider Gaussian random feature 
vectors and associate them with two different random graph models, Erdős–Rényi graphs and random geomet
ric graphs. The details for these models are described and discussed in Appendix I.1 in the online supplemen
tary file.

In Figure 1, we show the simulation results for the values of the approximation factor. Given a sample from 
preceding graphs and feature vectors, we plot the value of α(M,γ), α(1)YB and α(2)YB against the discount rate 1� γ, 
which ranges from 10�5 to 10�0:5. Note that the two plots use different scales: panel (a) is a linear-log plot, 
whereas panel (b) is a log-log plot. Figure 1 shows that the approximation factor α(M,γ) derived in Theorem 1 is 
always between α(1)YB and α(2)YB. As mentioned before, the latter quantity depends on the particular behavior of the 
linear operator L in the subspace S⊥, which can be difficult to estimate. The improvement over α(1)YB, on the other 
hand, can be significant.

In the Erdős–Rényi model, all three quantities are bounded by a relatively small constant, regardless of the 
value of γ. The bound α(M,γ) is roughly at the midpoint between the bounds α(1)YB and α(2)YB. On the other hand, 
the differences are much starker in the random geometric graph case: the bound improves over α(1)YB by several 
orders of magnitude while being off from α(2)YB by a factor of 10 for large γ. As we discuss shortly in Lemma 1, 
this is because the approximation factor α(M,γ) scales as O(1� κ(M))�1, whereas α(1)YB scales as O(1� κ(M))�2, 
making a big difference in the case where the constant κ(M) is large.

Figure 1. (Color online) Plots of various approximation factor as a function of the discount factor γ in the policy evaluation 
problem. (See Section 3.1.2.2 for a discussion.) (a) Results for an Erdős–Rényi random graph model with n � 3,000, projected 
dimension d � 1,000, and a � 3. The resulting number of vertices in the graph G̃ is 2,813. The value of 1� γ is plotted in log- 
scale, and the value of approximation factor is plotted on the standard scale. (b) Results for a random geometric graph model 
with n � 3,000, projected dimension d � 2, and r � 0.1. The resulting number of vertices in the graph G̃ is 2,338. Both the dis
count rate 1� γ and the approximation factor are plotted on the log-scale. 

(a) (b)
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3.1.2.3. Some Useful Bounds on a(M, |||L|||X). We conclude our discussion of the approximation factor with 
some bounds that can be derived under different assumptions on the operator L and its projected version M. The 
following lemma is useful in understanding the behavior of the approximation factor as a function of the contrac
tivity properties of the operator L; this is particularly useful in analyzing convergence rates in numerical PDEs.

Lemma 1. Consider a projected matrix M ∈ Rd×d such that (I�M) is invertible and κ(M) < 1. 
(a) For any s > 0, we have the bound

α(M, s) ≤ 1 + |||(I �M)�1
|||

2
op · s

2 ≤ 1 + s2

(1� κ(M))2
: (30a) 

(b) For s ∈ [0, 1], we have

α(M, s) ≤ 1+ 2|||(I�M)�1
|||op ≤ 1+ 2

1� κ(M) : (30b) 

See Appendix G.1 in the online supplementary file for the proof of this lemma.
A second special case, also useful, is when the matrix M is symmetric, a setting that appears in least squares 

regression, value function estimation in reversible Markov chains, and self-adjoint elliptic operators. The optimal 
approximation factor α(M,γmax) can be explicitly computed in such cases.

Lemma 2. Suppose that M is symmetric with eigenvalues {λj(M)}dj�1 such that λmax(M) < 1. Then for any s > 0, we have

α(M, s) � 1+ max
j�1, : : : ,d

s2�λ2
j

(1�λj)
2 : (31) 

See Appendix G.2 in the online supplementary file for the proof of this lemma.
Lemma 1 reveals that there is a qualitative shift between the nonexpansive case |||L|||X ≤ 1 and the complemen

tary expansive case. In the latter case, the optimal approximation factor always scales as O(1� κ(M))�2, but 
below the threshold |||L|||X � 1, the approximation factor drastically improves to become O(1� κ(M))�1. It is 
worth noting that both bounds can be achieved up to universal constant factors. In the context of differential 
equations, the bound of the form (a) in Lemma 1 is known as Céa’s lemma (Céa [16]), which plays a central role 
in the convergence rate analysis of the Galerkin methods for numerical differential equations. However, the 
instance-dependent approximation factor α(M, |||L|||X) can often be much smaller: the global coercive parameter 
needed in Céa’s estimate is replaced by the bounds on the behavior of the operator L in the finite-dimensional 
subspace. Part (b) in Lemma 1 generalizes Céa’s energy estimate from the symmetric positive-definite case to the 
general nonexpansive setting. See Corollary 4 for a more detailed discussion on the consequences of our results 
to elliptic PDEs.

Lemmas 1 and 2 yield the following corollary of the general bound (28) under different conditions on the oper
ator L.

Corollary 1. Under the conditions of Theorem 1 and given a sample size n ≥ c0σ2
Ld

(1�κ)2
log2 ||v0�v ||2d

1�κ

� �
, we have the following. 

(a) There is a universal positive constant c such that

E||v̂n � v∗||2 ≤ c |||L|||2X
(1� κ(M))2

· inf
v∈S
||v� v∗||2 +

(σ2
b + σL||v||2)
(1� κ(M))2

d
n

( )

(32a) 

for any operator L and its associated projected operator M � ΦdLΦ∗d.
(b) Moreover, when L is nonexpansive (|||L|||X ≤ 1), we have

E||v̂n� v∗||2 ≤ c 1
1� κ(M) · inf

v∈S
||v� v∗||2 +

(σ2
b + σL||v||2)
(1� κ(M))2

d
n

( )

: (32b) 

See Appendix C in the online supplementary file for the proof of this claim.
As alluded to before, the simplified form of Corollary 1 no longer has an explicit higher-order term, and the 

statistical error now scales at the parametric rate d=n. It is worth noting that the lower bound on n required in the 
assumption of the corollary is a mild requirement: in the absence of such a condition, the statistical error term 
(σ2

b+σL ||v ||2)
(1�κ)2

d
n in both bounds would blow up, rendering the guarantee vacuous.
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3.2. Lower Bounds
In this section, we establish information-theoretic lower bounds on the approximation factor, as well as the statis
tical error. Our eventual result (in Corollary 2) shows that the first two terms appearing in Theorem 1 are both 
optimal in a certain instance-dependent sense. However, a precise definition of the local neighborhood of 
instances over which the lower bound holds requires some definitions. In order to motivate these definitions 
more transparently and naturally arrive at both terms of the bound, the following section presents individual 
bounds on the approximation and estimation errors and then combines them to obtain Corollary 2.

3.2.1. Lower Bounds on the Approximation Error. As alluded to in the preceding, the first step involved in a 
lower bound is a precise definition of the collection of problem instances over which it holds; let us specify a nat
ural such collection for lower bounds on the approximation error. Each problem instance is specified by the joint 
distribution of the observations (Li, bi), which implicitly specifies a pair of means (L, b) � (E[Li],E[bi]). For nota
tional convenience, we define this class by first defining a collection comprising instances specified solely by the 
mean pair (L, b) and then providing restrictions on the distribution of (Li, bi). Let us define the first such compo
nent. For a given matrix M0 ∈ Rd×d and vector h0 ∈ Rd, write

Capprox(M0, h0, D,δ,γmax) :�

�

(L, b)
�
�
�
�
|||L|||X ≤ γmax, A(S, v∗) ≤ δ2, dim(X) �D,

ΦdLΦ∗d �M0, and Φdb � h0:

�

:

In other words, this is a collection of all instances of the pair (L, b) ∈ L × RD whose projections onto the subspace 
of interest are fixed to be the pair (M0, h0) and whose approximation error is less than δ2. In addition, the operator 
L satisfies a certain bound on its operator norm.

Having specified a class of (L, b) pairs, we now turn to the joint distribution over the pair of observations (Li, 
bi), which we denote for convenience by PL,b. Now define the collection of instances

Gvar(σL,σb) :� {PL,b |(Li, bi) satisfies Assumption 1(B)with constants (σL,σb)}:

This is simply the class of all distributions such that our observations satisfy Assumption 1B with prespecified 
constants. As a point of clarification, it is useful to recall that our upper bound in Theorem 1 only needed 
Assumption 1A to hold, and we could have chosen to match this by defining the Gvar under Assumption 1A. We 
comment further on this issue following the theorem statement.

We are now ready to state Theorem 2, which is a lower bound on the worst-case approximation factor over all 
problem instances such that (L, b) ∈ Capprox(M0, h0, D,δ,γmax) and PL,b ∈Gvar(σL,σb). Note that such a collection of 
problem instances is indeed local around the pair (M0, h0). Two settings are considered in the statement of the the
orem: proper estimators when v̂n is restricted to take values in the subspace S and improper estimators where v̂n 
can take values in the entire space X. We use V̂S and V̂X to denote the class of proper and improper estimators, 
respectively. Finally, we use the shorthand Capprox ≡ Capprox(M0, h0, D,δ,γmax) for convenience.

Theorem 2. Suppose M0 ∈ Rd×d is a matrix such that I�M0 is invertible and that the scalars (σL,σb) are such that σL ≥

γmax and σb ≥ δ. If the ambient dimension satisfies D ≥ d+ 12
ω n2 for some scalar ω ∈ (0, 1), then we have the lower bounds

inf
v̂n∈V̂ S

sup
(L, b) ∈ Capprox

PL,b ∈Gvar(σL,σb)

E||v̂n� v∗||2 ≥ (1�ω) · α(M0,γmax) · δ
2 and (33a) 

inf
v̂n∈V̂X

sup
(L, b) ∈ Capprox

PL,b ∈Gvar(σL,σb)

E||v̂n� v∗||2 ≥ (1�ω) · (α(M0,γmax)� 1) · δ2: (33b) 

See Section 5.2 for the proof of this claim.
A few remarks are in order. First, Theorem 2 shows that the approximation factor upper bound in Theorem 1

is information-theoretically optimal in the instance-dependent sense: in the case of proper estimators, the upper 
and lower bounds can be made arbitrarily close by choosing the constant ω arbitrarily small in both theorems. 
Both bounds depend on the projected matrix M0, characterizing the fundamental impact of the geometry in the 
projected space on the complexity of the estimation problem. The lower bound for improper estimators is 
slightly smaller, but for most practical applications, we have α(M0,γmax) ≫ 1, and so this result should be viewed 
as almost equivalent.

Second, note that we may also extract a worst-case lower bound on the approximation factor from Theorem 2. 
Indeed, for a scalar γmax ∈ (0, 1), consider the family of instances in the aforementioned problem classes satisfying 
|||L|||X ≤ γmax. Setting M0 � γ2

maxId and applying Theorem 2, we see that (in a worst-case sense over this class) the 
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risk of any estimator is lower bounded by 1
1�γ2

max
A(S, v∗). This establishes the optimality of the classical worst-case 

upper bound (6).
Third, notice that the theorem requires the noise variances (σL,σb) to be large enough, and this is a natural 

requirement in spite of the fact that we seek lower bounds on the approximation error. Indeed, in the extreme 
case of noiseless observations, we have access to the population pair (L, b) with a single sample and can compute 
both v∗ and its projection onto the subspace S without error. From a more quantitative standpoint, it is worth not
ing that our requirements σL ≥ γmax and σb ≥ δ are both mild, because the scalars γmax and δ are typically order 1 
quantities. Indeed, if both of these bounds held with equality, then Corollary 1 yields that the statistical error 
would be of the order O(d=n) and so strictly smaller than the approximation error we hope to capture.4

Observe that Theorem 2 requires the ambient dimension D to be larger than n2. As mentioned in the introduc
tion, we should not expect any nontrivial approximation factor when n ≥D, but this leaves open the regime 
n≪D≪ n2. Is a smaller approximation factor achievable when D is not extremely large? We revisit this question 
in Section 3.2.4, showing that although there are some quantitative differences in the lower bound, the qualitative 
nature of the message remains unchanged.

Regarding our noise assumptions, it should first be noted that the class of instances satisfying Assumption 1A
is strictly larger than the corresponding class satisfying Assumption 1B, and so our lower bound extends imme
diately to the former case. Second, it is important to note that imposing only Assumption 1A would, in principle, 
allow the noise in the orthogonal complement S⊥ to grow in an unbounded fashion, and one should expect that 
it is indeed optimal to return an estimate of the projected fixed point v. As such, Theorem 2 constitutes a more 
meaningful lower bound, because we operate instead under the stronger Assumption 1B and enforce second- 
moment bounds on the noise not only for basis vectors in S but also for its orthogonal complement. Assumption 
1B allows for other natural estimators: for instance, the plug-in estimator of v∗ via the original fixed-point equa
tion (1) would now incur finite error. Our lower bound—which operates under the stronger assumption and is 
thus more challenging to establish—shows that the stochastic approximation estimator analyzed in Theorem 1 is 
optimal even if the noise in S⊥ behaves as well as that in S.

3.2.2. Lower Bounds on the Estimation Error. We now turn to establishing a minimax lower bound on the esti
mation error that matches the statistical error term in Theorem 1. This lower bound takes a slightly different 
form from Theorem 2: rather than studying the total error ||v̂n� v∗|| directly, we establish a lower bound on the 
error ||v̂n � v|| instead.

Indeed, the latter term is more meaningful to study in order to characterize the estimation error—which 
depends on the sample size n—because for large sample sizes, the total error ||v̂n� v∗|| will be dominated by a 
constant approximation error. As we demonstrate shortly, the term ||v̂n� v|| depends on noise covariance and 
the geometry of the matrix M0 in the projected space while having the desired dependence on the sample size n. It 
is worth noting also that this automatically yields a lower bound on the error ||v̂n � v∗||when we have v � v∗.

We are now ready to prove a local minimax lower bound for estimating v ∈ S, which is given by the solution 
to the projected linear equation v �ΠS(Lv + b). Although our objective is to prove a local lower bound around 
each pair (L0, b0) ∈ L × X, the fact that we are estimating v implies that it suffices to define our set of local 
instances in the d-dimensional space of projections. In particular, our mean parameters (L, b) are specified by 
those pairs for which ΦdLΦ∗d is close to M0 :�ΦdL0Φ

∗
d and Φdb is close to h0 :�Φdb0. Specifically, let v0 denote the 

solution to the projected linear equation v0 �ΠS(L0v0 + b0), and define the neighborhood

N(M0, h0) :� (M′, h′) : |||M′�M0|||F ≤ σL

ffiffiffi
d
n

r

and ||h′� h0||2 ≤ σb

ffiffiffi
d
n

r( )

, (34) 

which, in turn, defines a local class of problem instances (L, b) given by
Cest :� {(L, b)|(ΦdLΦ∗d,Φdb) ∈N(M0, h0)}:

We have thus specified our local neighborhood in terms of the mean pair (L, b), and as before, it remains to define 
a local class of distributions on these instances. To this end, define the class

Gcov(ΣL,Σb,σL,σb) :� Gvar(σL,σb) ∩ {PL,b |cov(Φd(b1 � b))≼Σb and cov(Φd(L1 � L)v0)≼ΣL}, (35) 

which corresponds to distributions on the observation pair (Li, bi) that satisfy Assumption 1B and whose 
“effective noise” covariances are dominated by the positive semidefinite (PSD) matrices ΣL and Σb.
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Note that Assumption 1B implies the diagonal elements of preceding two covariance matrices are bounded by 
σ2

b and σ2
L||v0||

2, respectively. In order to avoid conflicts between assumptions, we assume throughout that for all 
indices j ∈ [d], the diagonal entries of the covariance matrices satisfy the conditions

(Σb)j,j ≤ σ
2
b and (ΣL)j,j ≤ σ

2
L||v0||

2
: (36) 

We then have the following theorem for the estimation error ||v̂n� v||, where we use the shorthand Gcov ≡

Gcov(ΣL,Σb,σL,σb) for brevity.

Theorem 3. Under the above-mentioned setup, suppose the matrix I�M0 is invertible, and suppose that n ≥ 16σ2
L 

|||(I�M0)
�1
|||

2
opd. Then there is a universal constant c > 0 such that

inf
v̂n∈V̂X

sup
(L, b) ∈ Cest

PL,b ∈Gcov

E||v̂n� v||2 ≥ c · En(M0,ΣL +Σb):

See Appendix D in the online supplementary file for the proof of this claim.
The estimation error lower bound in Theorem 3 is the worst-case instantiation of the statistical error term 

En(M,Σ∗) in Theorem 1 within the local problem class, up to a universal constant. Indeed, in the asymptotic limit 
n→∞, the regularity of the problem can be leveraged in conjunction with classical Le Cam theory (see, e.g., van 
der Vaart [63]) to show that the asymptotic optimal limiting distribution is a Gaussian law with covariance 
(I�M)�1Σ∗(I�M)�⊤. (See the paper by Khamaru et al. [26] for a detailed analysis of this type in the special case 
of policy evaluation in tabular Markov decision processes.) This optimality result holds in a “local” sense: it is 
minimax optimal in a small neighborhood of radius O(1=

ffiffiffi
n
√
) around a given problem instance (M0, h0). Theorem 

3, on the other hand, is nonasymptotic, showing that a similar result holds provided n is lower bounded by an 
explicit, problem-dependent quantity of the order σ2

Ld|||(I�M0)
�1
|||

2
op. This accommodates a broader range of 

sample sizes than the upper bound in Theorem 1.

3.2.3. Combining the Bounds. Having presented separate lower bounds on the approximation and estimation 
errors in conjunction with definitions of local classes of instances over which they hold, we are now ready to pre
sent a corollary that combines the two lower bounds in Theorems 2 and 3.

We begin by defining the local classes of instances over which our combined bound holds. Given a matrix- 
vector pair (M0, h0), covariance matrices (ΣL,Σb), ambient dimension D > 0, and scalars δ,γmax,σL,σb > 0, we 
begin by specifying a collection of mean pairs (L, b) via

Cfinal(M0, h0, D,δ,γmax) :�
[

(M′,h′)∈Nn(M0,h0)

Capprox(M′, h′, D,δ,γmax): (37) 

Clearly, this represents a natural combination of the classes Capprox and Cest introduced in the preceding. We use 
the shorthand Cfinal for this class for brevity. Our collection of distributions PL,b is still given by the class Gcov 

from Equation (35).
With these definitions in hand, we are now ready to state our combined lower bound.

Corollary 2. Under the above-mentioned setup, suppose that the pair (σL,σb) satisfies the conditions in Theorem 2 and 
Equation (36) and that the matrix M0 satisfies |||M0|||op ≤ γmax� σL

ffiffiffiffiffiffiffiffi
d=n

p
. Moreover, suppose that the sample size and 

ambient dimension satisfy n ≥ 16σ2
L|||(I�M0)

�1
|||

2
opd and D ≥ d+ 36n2, respectively. Then the following minimax lower 

bound holds for a universal positive constant c:

inf
v̂n∈V̂X

sup
(L, b) ∈ Cfinal

PL,b ∈Gcov

E||v̂n� v∗||2 ≥ c · {(α(M0,γmax)� 1) · δ2 + En(M0,ΣL +Σb)}:

We prove this corollary in Appendix E in the online supplementary file. It is a relatively straightforward conse
quence of combining Theorems 2 and 3.

The combined lower bound matches the expression α(M0,γmax)A(S, v∗) + En(M0,ΣL +Σb), given by the first 
two terms of Theorem 1, up to universal constant factors. Recall from our discussion of Theorem 1 that the high- 
order term Hn(σL,σb, v) represents the “optimization error” of the stochastic approximation algorithm, which 
depends on the coercive condition κ(M0) instead of the natural geometry I�M0 of the problem. Although we do 
not expect this term to appear in an information-theoretic lower bound, the leading estimation error term 

Mou, Pananjady, and Wainwright: Oracle Inequalities for Projected Fixed-Points 
2322 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2308–2336, © 2022 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.9

.6
1.

11
1]

 o
n 

24
 A

pr
il 

20
24

, a
t 0

8:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



En(M0,ΣL +Σb) will dominate the high-order term when the sample size n is large enough. For such a range of n, 
the bound in Theorem 1 is information-theoretically optimal in the local class specified in the preceding. More 
broadly, consider the class of all instances satisfying Assumption 1B, with κ(M) ≤ κ and |||L|||X ≤ 1. Then the 
bound in Theorem 1 is optimal, in a worst-case sense, over this class as long as the sample size exceeds the 
threshold cσ2

L
(1�κ)2

d.

3.2.4. The Intermediate Regime. It remains to tie up some loose ends. Note that the lower bound in Theorem 2
requires a condition D≫ n2. On the other hand, it is easy to see that the approximation factor can be made arbi
trarily close to 1 when n≫D. (For example, one could run the estimator based on stochastic approximation and 
averaging—which was analyzed in Theorem 1—with the entire Euclidean space X and project the resulting esti
mate onto the subspace S.) In the middle regime n≪D≪ n2, however, it is not clear which estimator is optimal.

In the following theorem, we present a lower bound for the approximation factor in this intermediate regime, 
which establishes the optimality of Theorem 1 up to a constant factor.

Theorem 4. Suppose M0 ∈ Rd×d is a matrix such that I�M0 is invertible and that the scalars (σL,σb) satisfy σL ≥

1+ γmax and σb ≥ δ. If the ambient dimension satisfies D ≥ d+ 3qn1+1=q for some integer q ∈ 2, logn ∧ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1�γmax∧1)
√

� �

, then 

we have the lower bound

inf
v̂n∈V̂X

sup
(L, b) ∈ Capprox

PL,b ∈Gvar(σL,σb)

E||v̂n� v∗||2 ≥
α(M,γmax)� 1

4q2 · δ2:

See Appendix F in the online supplementary file for the proof of this theorem.
Theorem 4 resolves the gap in the intermediate regime, up to a constant factor that depends on q. In particular, 

the stochastic approximation estimator (24) for projected equations still yields a near-optimal approximation fac
tor. Compared with Theorem 2, Theorem 4 weakens the requirement on the ambient dimension D and covers 
the entire regime D≫ n. Furthermore, using the same arguments as in Corollary 2, this theorem can also be com
bined with Theorem 3 to obtain the following lower bound in the regime D ≥ d+ 3qn1+1=q for any integer q > 0:

inf
v̂n∈V̂X

sup
(L, b) ∈ Cfinal

PL,b ∈Gcov

E||v̂n� v∗||2 ≥ c ·
α(M0,γmax)� 1

q2 · δ2 + En(M0,ΣL +Σb)

� �

:

Let us summarize our approximation factor lower bounds in the various regimes. Consider a sequence of prob
lem instances (P(n)L,b)

∞
n�1 with increasing ambient dimension Dn. Let the projected dimension d, noise variances 

(σL,σb), oracle error δ, projected matrix ΦdL(n)Φ∗d �M, and operator norm bound |||L|||X ≤ γmax all be fixed. Table 1
presents a combination of our results from Theorems 1, 2, and 4; our results suggest that the optimal approxima
tion factor exhibits a “slow” phase transition phenomenon. It is an interesting open question whether the phase 
transition is sharp and to identify the asymptotically optimal approximation factor in the regime limn→∞

logDn
logn � 1 

because our lower bounds do not apply in this linear regime.

4. Consequences for Specific Models
We now discuss the consequences of our main theorems for the three examples introduced in Section 2.2. For 
brevity, we state only upper bounds for the first two examples; our third example for temporal difference learn
ing methods includes both upper and lower bounds.

Table 1. Bounds on the approximation factor E||v̂n�v∗ ||2
A(S,v∗) for proper estimators in different ranges of 

ambient dimension. Here, cq ∈ (0, 1) represents a constant depending only on the aspect ratio q.

q � limn→∞
log Dn
log n [2,∞) (1, 2) (0, 1)

Lower bound α(M0,γmax) cq ·α(M0,γmax) 1
Upper bound α(M0,γmax) α(M0,γmax) 1

Mou, Pananjady, and Wainwright: Oracle Inequalities for Projected Fixed-Points 
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2308–2336, © 2022 INFORMS 2323 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.9

.6
1.

11
1]

 o
n 

24
 A

pr
il 

20
24

, a
t 0

8:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



4.1. Linear Regression
Recall the setting of linear regression5 from Section 2.2.1, including our i.i.d. observation model (14). We assume 
bounds on the second moment of ε and fourth moment of X—namely, the existence of some ς > 0 such that

E〈u, X〉4 ≤ ς4 and E(ε2) ≤ ς2 for all u ∈ SD�1: (38) 

These conditions ensure that Assumption 1A is satisfied with (σL,σb) � (β
�1ς2,β�1ς2). Recall that the (unpro

jected) covariance matrix satisfies the PSD relations µI ≼E[XX⊤]≼βI, and define the d-dimensional covariance 
matrix Σ :� E[(ΦdX)(ΦdX)⊤] for convenience.

In this case, our stochastic approximation iterates (24a) take the form
vt+1 � vt � η(ΠSXt+1X⊤t+1ΠSvt + Yt+1ΠSXt+1) for all t � 0, 1, 2, : : : , (39) 

and we take the averaged iterates v̂n :� 2
n
Pn�1

t�n=2 vt. For this procedure, we have the following guarantee.

Corollary 3. Suppose that we have n i.i.d. observations {(Xi, Yi)}
n
i�1 from the model (14) satisfying the moment conditions 

(38). Then there are universal positive constants (c, c0) such that given a sample size n ≥ c0ς
4d

λ2
min(Σ)

log2 β
µ
||v0� v||22d

� �
, if the 

stochastic approximation scheme (39) is run with step size η � 1
c0ς2

ffiffiffiffi
dn
√ , then the averaged iterate satisfies the bound

E||v̂n� v∗||22 ≤ (1+ω) ·α Id�
Σ

β
, 1�µ

β

� �

A(S, v∗) + c · trace(Σ�1) ·E(ε2)

ωn
+

c
ω

ς2

λmin(Σ)
·

ffiffiffi
d
n

r !3 

for any ω > 0.

This result is a direct consequence of Theorem 1 in application to this model.
Note that the statistical error term trace(Σ�1)·E(ε2)

n in this case corresponds to the classical statistical rates for linear regres
sion in this low-dimensional subspace. The approximation factor, by Lemma 2, admits the closed-form expression

α Id�
Σ

β
, 1�µ

β

� �

�max
j∈[d]

µ2 + 2β(λj �µ)

λ2
j

, 

where {λj}
d
j�1 denote the eigenvalues of the matrix Σ. Because λj ∈ [µ,β] for each j ∈ [d], the approximation factor 

is at most of the order O β
λmin(Σ)

� �
.

Compared with known sharp oracle inequalities for linear regression (e.g., Rigollet and Hütter [51]), the 
approximation factor in our bound is not 1 but rather a problem-dependent quantity. This is because we 
study the estimation error under the standard Euclidean metric || · ||2, as opposed to the prediction error under the 
data-dependent metric || · ||L2(PX). When the covariance matrix E[XX⊤] is identity, the approximation factor 
α Id�

Σ
β , 1� µ

β

� �
is equal to 1, recovering classical results. Another error metric of interest, motivated by applica

tions such as transfer learning (Li et al. [35]), is the prediction error when the covariates X follow a different dis
tribution Q. For such a problem, the aforementioned result can be modified straightforwardly by choosing the 
Hilbert space X to be RD, equipped with the inner product 〈u, v〉 :� u⊤(EQ[XX⊤])�1v.

4.2. Galerkin Methods
We now return to the example of Galerkin methods, as previously introduced in Section 2.2.2, with the i.i.d. 
observation model (18). We assume the basis functions φ1, : : : ,φd to have a uniformly bounded function value 
and gradient, and we define the scalars

σL :� 1+ 2
β

� �

max
j∈[d]

sup
x∈Ω
||∇φj(x)||2 and σb :�

||f ||L2 + 1
β

max
j∈[d]

sup
x∈Ω
|φj(x)|: (40) 

These boundedness conditions are naturally satisfied by many interesting basis functions such as the Fourier 
basis6 and ensure—we verify this concretely in the proof of Corollary 4 to follow—that our observation model 
satisfies Assumption 1A with parameters (σL,σb).

Taking the finite-dimensional representation v � ϑ⊤φ, the stochastic approximation estimator for solving Equa
tion (19) is given by

ϑt+1 � ϑt� β
�1η(∇φ(xt+1)

⊤at+1∇φ(xt+1)ϑt� ft+1φ(yt+1)) for t � 0, 1, : : : ,

ϑ̂n :�
2
n
Xn�1

t�n=2
ϑt, and v̂n :� ϑ̂

⊤

nφ:
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In order to state our statistical guarantees for v̂n, we define the following matrices:

M :� Id� β
�1
Z

Ω

∇φ(x)⊤a(x)∇φ(x)dx,

ΣL :�
1
β2

Z

Ω

(∇φ)⊤a∇v(∇v)⊤a∇φ dx� 1
β2

�Z

Ω

(∇φ)⊤a∇v dx
��Z

Ω

(∇φ)⊤a∇v dx
�⊤

+
1
β2

Z

Ω

(∇φ)⊤
h
(∇v)(∇v)⊤ +diag(||∇v||22� (∂jv)2)mj�1

i
(∇φ)dx,

Σb :�
1
β2

Z

Ω

(f (x)2 + 1)φ(x)φ(x)⊤ dx� 1
β2

�Z

Ω

f (x)φ(x)dx
��Z

Ω

f (x)φ(x)dx
�⊤

:

With these definitions in hand, we are ready to state the consequence of our main theorems to the estimation 
problem of elliptic equations.

Corollary 4. Under the above-mentioned setup, there are universal positive constants (c, c0) such that if n ≥ c0σ2
Ld

(1�κ(M))2 

log2 ||v0�v ||2βd
µ

� �
and the stochastic approximation scheme is run with step size η � 1

c0σL
ffiffiffiffi
dn
√ , then the averaged iterates satisfy

E||v̂n� v∗||2X ≤ (1+ω)α M, 1�µ
β

� �

inf
v∈S
||v� v∗||2X + c 1+ 1

ω

� �

· (En(M,ΣL +Σb) +Hn(σL,σb, v))

for any ω > 0.

See Appendix H.3.2 in the online supplementary file for the proof of this corollary.
Note that the approximation factor α M, 1� µ

β

� �
scales as O(β=µ), which recovers Céa’s energy estimates in the 

symmetric and uniform elliptic case (Céa [16]). On the other hand, for a suitable choice of basis vectors, the 
bound in Corollary 4 can often be much smaller: the parameter µ corresponding to a global coercive condition 
can be replaced by the smallest eigenvalue of the projected operator M. Furthermore, note that our analysis does 
not require the symmetry and contraction condition of the operator L, and so it applies also to the case where the 
operator A is not uniformly elliptic.

It is also worth noting that the bound in Corollary 4 is given in terms of Sobolev norm || · ||X � || · ||Ḣ1 as opposed 
to standard L2-norm used in the nonparametric estimation literature. By the Poincaré inequality, a Sobolev 
Ḣ1-norm bound implies an L2-norm bound, and it ensures stronger error guarantees on the gradient of the esti
mated function.

4.3. Temporal Difference Learning
We now turn to the final example previously introduced in Section 2.2.3—namely, that of the TD algorithm in 
reinforcement learning. Recall the i.i.d. observation model (21). Also recall the equivalent form of the projected 
fixed-point equation (23), and note that the population-level operator L satisfies the norm bound

|||L|||X � γ · sup
||v||≤1
||Pv|| ≤ γ :� γmax, 

because ξ is the stationary distribution of the transition kernel P.

4.3.1. Upper Bounds on Stochastic Approximation with Averaging. As mentioned before, this example is some
what nonstandard in that the basis functions ψi are not necessarily orthonormal; indeed, the classical temporal dif
ference learning update in Rd involves the stochastic approximation algorithm

ϑt+1 � ϑt� η(ψ(st+1)ψ(st+1)
⊤
ϑt� γψ(st+1)ψ(s+t+1)

⊤
ϑt�Rt+1(st+1)ψ(st+1)): (41a) 

The Polyak–Ruppert averaged estimator is then given by the relations

ϑ̂n �
2
n
Xn�1

t�n=2
ϑt and v̂n :� ϑ̂

⊤

nψ: (41b) 

Note that the updates (22) are, strictly speaking, different from the canonical iterates (25), but this should not be 
viewed as a fundamental difference because we are ultimately interested in the value function iterates v̂n; these 
are obtained from the iterates ϑ̂n by passing back to the original Hilbert space.
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Nevertheless, this cosmetic difference necessitates some natural basis transformations before stating our 
results. Define the matrix7 B ∈ Rd×d by Bij :� 〈ψi, ψj〉 for i, j ∈ [d]; this defines an orthonormal basis given by

[φ1 φ2 : : : φd ] :� [ψ1 ψ2 : : : ψd ]B
�1=2:

We define the min/max eigenvalues β :� λmax(B) and µ :� λmin(B) so that β=µ is the condition number of the covari
ance matrix of the features.

Having set up this transformation, we are now ready to state the implication of our main theorem to the case 
of LSTD problems. We assume the following fourth-moment condition:

Eξ[R4(s)] ≤ ς4, and Eξ(u⊤B�1=2ψ(s))4 ≤ ς4 for all u ∈ Sd�1: (42) 

As verified in the proof of Corollary 5 to follow, Equation (42) suffices to guarantee that Assumption 1A is satis
fied with parameters (σL,σb) � (2ς2,ς2=

ffiffiffi
β

p
). We also define the matrices

M :� γB�1=2Eξ[ψ(s)ψ(s+)⊤]B�1=2, and Σ∗ :� covξ[B�1=2ψ(s)(ψ(s)� γψ(s+)�R(s))⊤]:

The following corollary then provides a guarantee on the Polyak–Ruppert averaged TD(0) iterates (41).

Corollary 5. Under the setup above, there are universal positive constants (c, c0) such that given a sample size 
n ≥ c0ς

4β2d
µ2(1�κ(M))2

log2 ||v0�v ||22βd
µ(1�κ(M))

� �
, and when the stochastic approximation scheme (41a) is run with step size η � 1

c0ς2β
ffiffiffiffi
dn
√ , the 

averaged iterates satisfy the bound

E||v̂n � v∗||2 ≤ (1+ω)α(M,γ)A(S, v∗) + c 1+ 1
ω

� �

En(M,Σ∗) + (1+ ||v||2) ς2β

(1� κ(M))µ

ffiffiffi
d
n

r !3
2

4

3

5 (43) 

for any ω > 0.

See Appendix H.1 in the online supplementary file for the proof of this corollary.
In the worst case, the approximation factor α(M,γ) scales as 1

1�γ2, recovering the classical result (6). More gener
ally, it gives a fine-grained characterization of the approximation factor depending on the one-step autocovar
iance matrix for the feature vectors. By Lemma 1, we have α(M,γ) ≤O 1

1�κ(M)

� �
, so intuitively, the approximation 

factor is large when there are feature space directions in which the Markov chain transitions slowly. On the other 
hand, if the one-step transitions move rapidly in all directions of feature space, then the approximation factor is 
much smaller.

The statistical error term En(M,Σ∗) matches the Cramér–Rao lower bound and gives a finer characterization 
than both worst-case upper bounds (Bhandari et al. [8]) and existing instance-dependent upper bounds (Laksh
minarayanan and Szepesvári [33]). Note that the final higher-order term depends on the condition number β

µ
of 

the covariance matrix B. This ratio is 1 when the basis vectors are orthonormal, but in general, the speed of algo
rithmic convergence depends on this parameter.

4.3.2. Approximation Factor Lower Bounds for MRPs. We conclude our discussion of discounted MRPs with an 
information-theoretic lower bound for policy evaluation. This bound involves technical effort beyond that in the 
proof of Theorem 2, because any valid construction for MRPs must make use only of operators L that are con
structed using a valid transition kernel. To set the stage, we say that a Markov reward process (P,γ, r) and associ
ated basis functions {ψj}

d
j�1 are in the canonical setup if the following conditions hold: 

• The stationary distribution ξ of P exists and is unique.
• The reward function and its observations are uniformly bounded. In particular, we have ||r||∞ ≤ 1, and ||R||∞ ≤ 1 

almost surely.
• The basis functions are orthonormal; that is, Eξ[ψ(s)ψ(s)⊤] � Id.
The three conditions are standard assumptions in Markov reward processes.
Now given scalars ν ∈ (0, 1] and γ ∈ (0, 1), integer D > 0, and scalar δ ∈ (0, 1=2), we consider the following class 

of MRPs and associated feature vectors:

CMRP(ν,γ, D,δ) :�
(

(P,γ, r,ψ)
�
�
�
�
(P,γ, r,ψ) is in the canonical setup; |S| �D,

A(S, v∗) ≤ δ2, κ(Eξ[ψ(s)ψ(s+)⊤]) ≤ ν

)

:

Mou, Pananjady, and Wainwright: Oracle Inequalities for Projected Fixed-Points 
2326 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2308–2336, © 2022 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.9

.6
1.

11
1]

 o
n 

24
 A

pr
il 

20
24

, a
t 0

8:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Note that under the canonical setup, we have M � γEξ[ψ(s)ψ(s+)⊤], and consequently, a problem instance in the 
class CMRP(ν,γ, D,δ) satisfies κ(M) ≤ νγ in the setup of Corollary 5. The condition κ(Eξ[ψ(s)ψ(s+)⊤]) ≤ ν can be 
seen as a “mixing” condition in the projected space: when ν is bounded away from 1, the feature vector cannot 
have too large a correlation with its next-step transition in any direction.

We have the following minimax lower bound for this class, where we use the shorthand CMRP ≡ CMRP(ν,γ, D,δ)
for convenience.

Proposition 1. There are universal positive constants (c, c1) such that if D ≥ c1(n2 + d), then for all scalars ν ∈ (0, 1] and 
γ ∈ (0, 1), we have

inf
v̂n∈V̂X

sup
(P,γ, r,ψ)∈CMRP

||v̂n � v∗||2 ≥ c
1� νγδ

2 ∧ 1: (44) 

See Appendix H.2 in the online supplementary file for the proof of this proposition.
A few remarks are in order. First, in conjunction with Corollary 5 and the second upper bound in Lemma 1, 

we can conclude that the TD algorithm for policy evaluation with linear function approximation attains the 
minimax-optimal approximation factor over the class CMRP up to universal constants, in the regime where the 
optimal error is bounded by O(1). It is also worth noting that Proposition 1 also shows that the worst-case upper 
bound (6) attributable to Tsitsiklis and Van Roy [60] is indeed sharp up to a universal constant; indeed, note that 
for all γ ∈ (0, 1), we have 1

1�γ2 ≍
1

1�γ and that the latter factor can be obtained from the lower bound (44) by taking 
ν � 1.

Second, note that the class CMRP is defined in a more “global” sense as opposed to the “local” class Capprox 

used in Theorem 2. This class contains all the MRP instances satisfying the approximation error bound and the 
constraint on κ(M), and a minimax lower bound over this larger class is weaker than the lower bound over the 
local class that imposes restrictions on the projected matrix. That being said, Proposition 1 still captures more 
structure in the Markov transition kernel than the fact that it is contractive in the ξ-norm. For example, when the 
Markov chain makes “local moves” in the feature space, the correlation between feature vectors can be large, 
leading to a large value of ν and larger values of the optimal approximation factor. On the other hand, if the one- 
step transition of the feature vector jumps a large distance in all directions, the optimal approximation factor will 
be small.

Finally, it is worth noticing that Proposition 1 holds only for the i.i.d. observation models. If we are given the 
entire trajectory of the Markov reward process, the approximation factor can be made arbitrarily close to 1, using 
TD(λ) methods (Tsitsiklis and Van Roy [60]). The trade-off inherent to the Markov observation model is an 
important direction for future work.

5. Proofs
We now turn to the proofs of our main results. The main proofs of Theorems 1 and 2 are given in this section, 
with some technical lemmas deferred to the online supplementary file. The proofs of Theorems 3 and 4 and Cor
ollaries 1 and 2, as well as associated lemmas, are presented in the online supplementary file.

5.1. Proof of Theorem 1
We divide the proof into two parts, corresponding to the two components in the mean-squared error of the esti
mator v̂n. The first term is the approximation error ||v� v∗||2 that arises from the difference between the exact solu
tion v∗ to the original fixed-point equation and the exact solution v to the projected set of equations. The second 
term is the estimation error E||v̂n � v||2, measuring the difficulty of estimating v on the basis of n noisy samples.

In particular, under the conditions of the theorem, we prove that the approximation error is upper bounded as

||v � v∗||2 ≤ α(M, |||L|||X) inf
v∈S
||v� v∗||2, (45a) 

whereas the estimation error is bounded as

E||v̂n � v||2 ≤ c trace((I �M)�1Σ∗(I �M)�⊤)
n + c σL

(1� κ)3
d
n

� �3=2
(||v||2σ2

L + σ
2
b): (45b) 

Given these two inequalities, it is straightforward to prove the bound (28) stated in the theorem. By expanding 
the square, we have
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E||v̂n � v∗||2 � E||v̂n � v||2 + ||v � v∗||2 + 2E〈v̂n � v, v � v∗〉

≤
(i)
E||v̂n � v||2 + ||v � v∗||2 + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E||v̂n � v||2 · ||v � v∗||2
q

≤
(ii)
E||v̂n � v||2 + ||v � v∗||2 + 1

ω
E||v̂n � v||2 + ω||v � v∗||2

� (1 + ω)||v � v∗||2 + 1 + 1
ω

� �

E||v̂n � v||2, 

where step (i) follows from the Cauchy–Schwarz inequality, and step (ii) follows from the arithmetic-geometric 
mean inequality and is valid for any ω > 0. Substituting the bounds from Equations (45a) and (45b) yields the 
claim of the theorem.

The remainder of our argument is devoted to the proofs of the bounds (45a) and (45b).

5.1.1. Proof of Approximation Error Bound (45a). We begin with some decomposition relations for vectors and 
operators. Note that S is a finite-dimensional subspace and therefore is closed. We use

S⊥ :� {u ∈ X | 〈u, v〉 � 0 | for all v ∈ S}

to denote its orthogonal complement. The pair (S,S⊥) forms a direct product decomposition of X, and the projec
tion operators satisfy ΠS +ΠS⊥ � I. Also define the operators LS,S �ΠSLΠS and LS,⊥ �ΠSLΠS⊥ . With this notation, 
our proof can be broken down into two auxiliary lemmas, which we state here.

Lemma 3. The error ||v� v∗|| between the projected fixed point v and the original fixed point v∗ is bounded as

||v� v∗||2 ≤ (1+ |||(I� LS,S)
�1LS,⊥|||

2
X) inf

v∈S
||v� v∗||2: (46) 

Lemma 4. Under the above-mentioned setup, we have

|||(I � LS,S)
�1LS,⊥|||

2
X ≤ λmax((Id �M)�1

(|||L|||2XId �MM⊤)(Id �M)�⊤):

The claimed bound (45a) on the approximation error follows by combining these two lemmas and recalling 
our definition of α(M, L). We now prove these two lemmas in turn.

5.1.2. Proof of Lemma 3. For any vector v ∈ X, we perform the orthogonal decomposition v � vS + v⊥, where 
vS :�ΠS(v) is a member of the set S, and v⊥ :�ΠS⊥,ξ is a member of the set S⊥. With this notation, the 
operator L can be decomposed as

L � (ΠS +ΠS⊥)L(ΠS +ΠS⊥) �ΠSLΠS|fflfflfflffl{zfflfflfflffl}
≕LS,S

+ ΠSLΠS⊥|fflfflfflfflffl{zfflfflfflfflffl}
≕LS,⊥

+ ΠS⊥LΠS
|fflfflfflfflffl{zfflfflfflfflffl}

≕L⊥,S

+ ΠS⊥LΠS⊥|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≕L⊥,⊥

:

The four operators LS,S, LS,⊥, L⊥,S, and L⊥,⊥ defined in the preceding equation are also bounded linear operators. 
By the properties of projection operators, we note that LS,S and L⊥,S both map each element of S⊥ to 0, and LS,⊥
and L⊥,⊥ both map each element of S to 0.

Decomposing the target vector v∗ in an analogous manner yields the two components
ṽ :�ΠS(v∗) and v⊥ :� v∗ � ṽ:

The fixed-point equation v∗ � Lv∗ + b can then be written using S and its orthogonal complement as

ṽ �(a)LS,Sṽ + LS,⊥v⊥ + bS, and v⊥ �(b)L⊥,Sṽ + L⊥,⊥v⊥ + b⊥: (47) 

For the projected solution v, we have the defining equation
v � LS,Sv + bS: (48) 

Subtracting (a) in Equation (47) from Equation (48) yields

(I � LS,S)(ṽ � v) � LS,⊥v⊥:

Recall the quantity M � ΦdLΦ∗d and our assumption that κ(M) � 1
2λmax(M+MT) < 1. This condition implies that 

I� LS,S is invertible on the subspace S. Because this operator also maps each element of S⊥ to itself, it is invertible 
on all of X, and we have ṽ� v � (I� LS,S)

�1LS,⊥v⊥.

Mou, Pananjady, and Wainwright: Oracle Inequalities for Projected Fixed-Points 
2328 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2308–2336, © 2022 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.9

.6
1.

11
1]

 o
n 

24
 A

pr
il 

20
24

, a
t 0

8:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Applying the Pythagorean theorem then yields
||v � v∗||2 � ||v � ṽ||2 + ||ṽ � v∗||2 � ||(I � LS,S)

�1LS,⊥v⊥||2 + ||v⊥||2

≤ (1 + |||(I � LS,S)
�1LS,⊥|||

2
X) · ||v

⊥||
2, (49) 

as claimed.

5.1.3. Proof of Lemma 4. By the definition of operator norm for any vector v ∈ X such that ||v|| � 1, we have

|||L|||2X ≥ ||Lv||2 � ||LS,SvS + LS,⊥v⊥||2 + ||L⊥,SvS + L⊥,⊥v⊥||2 ≥ ||LS,SvS + LS,⊥v⊥||2:

Noting the fact that LS,Sv⊥ � 0 � LS,⊥vS, we have the following norm bound on the linear operator LS,S + LS,⊥:

|||LS,S + LS,⊥|||X � sup
||v||�1
||(LS,S + LS,⊥)v||

� sup
||v||�1
||LS,SvS + LS,⊥v⊥|| ≤ |||L|||X:

By definition, the operator L∗S,⊥ �ΠS⊥L∗ΠS maps any vector to S⊥, and the operator LS,S maps any element of S⊥
to 0. Therefore, we have the identity LS,SL∗S,⊥ � 0. A similar argument yields that LS,⊥L∗S,S � 0. Consequently, we 
have

|||L|||2X ≥ |||LS,S + LS,⊥|||
2
X � |||(LS,S + LS,⊥)(LS,S + LS,⊥)

∗
|||X

� |||LS,SL∗S,S + LS,⊥L∗S,⊥
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕G

|||X: (50) 

Note that the operator G can be expressed as G �ΠS(LΠSL∗ + LΠS⊥L∗)ΠS. From this representation, we see that 
• for any vector x ∈ X, we have Gx ∈ S, and
• for any vector y ∈ S⊥, we have Gy � 0.
Consequently, there exists a matrix G̃ ∈ Rd×d such that G �Φ∗dG̃Φd. Because G is a positive semidefinite opera

tor, the matrix G̃ is positive semidefinite. Equation (50) implies that

λmax(G̃) � |||G̃|||op � |||G|||X ≤ |||L|||
2
X: (51a) 

Now defining τ :� |||(I� LS,S)
�1LS,⊥|||X, note that

τ2 � ||| (I� LS,S)
�1LS,⊥L∗S,⊥(I� L∗S,S)

�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕H

|||X: (51b) 

Moreover, the operator H is self-adjoint, and we have the following properties: 
• The operator LS,⊥ maps any vector to S, and (I� LS,S)

�1 maps S to itself. Consequently, for any x ∈ X, the vector 
Hx � (I� LS,S)

�1LS,⊥(L∗S,⊥(I� L∗S,S)
�1
)x is a member of the set S.

• The operator L∗S,⊥ �ΠS⊥L∗ΠS maps any vector from S⊥ to 0. Consequently, for any y ∈ S⊥, we have 
Hy � (I� LS,S)

�1LS,⊥(L∗S,⊥(I� L∗S,S)
�1
)y � 0.

Given these facts, there exists a matrix H̃ ∈ Rd×d such that H � Φ∗dH̃Φd. Because the operator H is positive semidefi
nite, so too is the matrix H̃. Consequently, by Equation (51b), we obtain the identity τ2 � |||H|||X � |||H̃ |||op � λmax(H). 
In particular, letting u ∈ Sd�1 be a maximal eigenvector of H̃, we have

H̃ ≽ τ2uu⊤: (52) 

Because M �ΦdLS,SΦ
∗
d by definition, combining the aforementioned matrix inequalities (51a) and (52), we arrive 

at the bound

|||L|||2XId ≽ G̃
� Φd(LS,SL∗S,S + LS,⊥L∗S,⊥)Φ

∗
d

� ΦdLS,SL∗S,SΦ
∗
d + (Φd(I� LS,S)Φ

∗
d) · (Φd(I� LS,S)

�1LS,⊥L∗S,⊥(I� L∗S,S)
�1Φ∗d) · (Φd(I� L∗S,S)Φ

∗
d)

�MM⊤ + (I�M)H̃(I�M⊤)
≽MM⊤ + τ2(I�M)uu⊤(I�M⊤):

Rearranging and noting that u ∈ Sd�1, we arrive at the inequality

τ2 ≤ u⊤[(I�M)�1
(|||L|||2XId�MM⊤)(I�M)�⊤]u ≤ λmax((I�M)�1

(|||L|||2XId�MM⊤)(I�M)�⊤), 

which completes the proof of Lemma 4.
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5.1.4. Proof of Estimation Error Bound (45b). We now turn to the proof of our claimed bound on the estimation 
error. Our analysis relies on two auxiliary lemmas. The first lemma provides bounds on the mean-squared error 
of the standard iterates {vt}t≥0—that is, without the averaging step.

Lemma 5. Suppose that the noise conditions in Assumption 1A hold. Then for any step size η ∈
�
0, (1� κ)=(4σ2

Ld+ 1+ |||L|||2X)
�
, 

we have the bound

E||vt� v||2 ≤ e�(1�κ)ηt=2E||v0� v||2 + 8η
1� κ (||v||

2σ2
Ld+ σ2

bd) valid for t � 1, 2, : : : : (53) 

See Appendix A.1 in the online supplementary file for the proof of this claim.
Our second lemma provides a bound on the Polyak–Ruppret-averaged estimate v̂n based on n observations in 

terms of a covariance term, along with the error of the nonaveraged sequences {vt}t≥1.

Lemma 6. Under the above-mentioned setup, we have the bound

E||v̂n � v||2 ≤ 3
n� n0

trace((I �M)�1Σ∗(I �M)�⊤)

+
3

(n� n0)
2

Xn

t�n0

E||(I �M)�1Φd(Lt+1 � L)(vt � v)||22 +
3E||vn � vn0 ||

2

η2(n� n0)
2
(1� κ)2

: (54) 

See Appendix A.2 in the online supplementary file for the proof of this claim.
Equipped with these two lemmas, we can now complete the proof of the claimed bound (45b) on the estima

tion error. Recalling that n0 � n=2, we see that the first term in the bound (54) matches a term in the bound (45b). 
As for the remaining two terms in Equation (54), the second-moment bounds from Assumption 1A combined 
with the assumption that κ(M) < 1 imply that

E||(I�M)�1Φd(Lt+1 � L)(vt� v)||22 ≤
1

(1� κ)2
E||Φd(Lt+1 � L)(vt� v)||22

≤
1

(1� κ)2
Xd

j�1
E〈φj, (Lt+1� L)(vt� v)〉2 ≤ σ

2
Ld||vt� v||2

(1� κ)2
:

On the other hand, we can use Lemma 5 to control the third term in the bound (54). We begin by observing that

||vn � vn0 ||
2
≤ 2||vn � v||2 + 2||vn0 � v||2 ≤ 4 sup

n0≤t≤n
E||vt � v||2:

If we choose a burn-in time n0 >
c0

(1�κ)η log ||v0�v ||2d
1�κ

� �
, then Lemma 5 ensures that

sup
n0≤t≤n

E||vt� v||2 ≤ 16η
1� κ (||v||

2σ2
Ld+ σ2

bd):

Finally, taking the step size η � (24σL
ffiffiffiffiffiffi
dn
√
)
�1, recalling that n0 � n=2, and putting together the pieces yields

E||v̂n � v||2 ≤ 12
n trace((I�M)�1Σ∗(I�M)�⊤) + 1

(1� κ)2
12σ2

Ld
n +

48
η2n2

� �

sup
n0≤t≤n

E||vt� v||2

≤
12
n

trace((I�M)�1Σ∗(I�M)�⊤) + 48σL

(1� κ)3
d
n

� �3=2
(||v||2σ2

L + σ
2
b), 

as claimed.

5.2. Proof of Theorem 2
At a high level, our proof of the lower bound proceeds by constructing two ensembles of problem instances that 
are hard to distinguish from each other and such that the approximation error on at least one of them is large. 
The two instances are indexed by values of a bit z ∈ {�1, 1}, and each instance is, in turn, obtained as a mixture 
over 2D�d centers; each center is indexed by a binary string ε ∈ {�1, 1}D�d. The problem is then phrased as one of 
estimating the value of z from the observations; this is effectively a reduction to testing and the use of Le Cam’s 
mixture-versus-mixture method.

Specifically, let u ∈ Sd�1 be an eigenvector associated with the largest eigenvalue of the matrix (I�M0)
�1
(γ2

max 
I�M0M⊤0 )(I�M0)

�⊤. By the definition of the approximation factor α(M0,γmax), we have
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(α(M0,γmax)� 1) · (I�M0)uu⊤(I�M0)
⊤

≼γ2
maxI�M0M⊤0 :

Based on the eigenvector u, we further define the d-dimensional vectors:

w :�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α(M0,γmax)� 1
q

· (I �M0)u and y :�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α(M0,γmax)� 1
q

· δu: (55) 

Substituting into the aforementioned PSD domination relation yields that

ww⊤ +M0M⊤0 ≼γ2
maxI: (56) 

Now consider the following class of (population-level) problem instances (L(ε,z), b(ε,z), v∗ε,z) indexed by a binary 
string ε ∈ {�1, 1}D�d and a bit z ∈ {�1, 1}:

L(ε,z) :�

M0

ffiffiffi
d
√

D� dεd+1w ⋯
ffiffiffi
d
√

D� dεDw

0 0 ⋯ 0

⋮ ⋮

0 0 ⋯ 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

, v∗ε,z :�

ffiffiffiffiffi
2d
√
(zy+ (I�M0)

�1h0)
ffiffiffi
2
√

zδεd+1

⋮
ffiffiffi
2
√

zδεD

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

,

b(ε,z) :� (I� L(ε,z))v∗ε,z �

ffiffiffiffiffi
2d
√

h0
ffiffiffi
2
√

zδεd+1

⋮
ffiffiffi
2
√

zδεD

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: (57) 

We take the weight vector ξ to be

ξ �

1
2d

⋯ 1
2d|fflfflfflffl{zfflfflfflffl}

d

1
2(D� d)

⋯ 1
2(D� d)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(D�d)

2

6
4

3

7
5, 

and the weighted inner product 〈 · , · 〉 on the space X � RD is defined via

〈p, q〉 :�
XD

j�1
pjξjqj for each pair p, q ∈ RD:

This choice of inner product then induces the vector norm || · || and operator norm ||| · |||X.
Next, we define the basis vectors via

φi �

ffiffiffiffiffi
2d
√

ei for i � 1, 2, : : : , d, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(D� d)

p
ei for i � d + 1, : : : , D:

�

By construction, we have ensured that ||φi|| � 1 for each i ∈ [D]. We let the subspace S be the span of the first d 
standard basis vectors (i.e., S :� span(e1, e2, : : : , ed)).

For each binary string ε ∈ {�1, 1}D�d and signed bit z ∈ {�1, 1}, a straightforward calculation reveals that the 
projected problem instance satisfies the identities

ΦdL(ε,z)Φ∗d �M0 and Φdb(ε,z) � h0: (58a) 

Also note that for any pair (ε, z), we have by construction that

inf
v∈S
||v∗ε,z� v||2 � 1

2(D� d)
XD

j�d+1
(
ffiffiffi
2
√

zδεj)
2
� δ2: (58b) 

In other words, this shows that the || · ||-error of approximating v∗ε,z with the linear subspace S is always δ, irre
spective of which ε ∈ {�1, 1}D�d and z ∈ {�1, 1} are chosen.

Next, we construct the random observation models for the i.i.d. observations, which are also indexed by the 
pair (ɛ, z). In particular, we construct the random matrix L(ε,z)i and random vector b(ε,z)i via
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L(ε,z)i :�

M0 0 ⋯ 0
ffiffiffi
d
√
ετ(i)L

w 0 ⋯ 0
0 0 ⋯ 0

⋮ ⋮
0 0 ⋯ 0

2

6
6
4

3

7
7
5, b(ε,z)i :�

ffiffiffiffiffi
2d
√

h0
0
⋮
0ffiffiffi

2
√
(D� d)zδετ(i)b

0
⋮
0

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

, (59) 

where the random indices τ(i)L and τ(i)b are chosen independently and uniformly at random from the set 
{d+ 1, d+ 2, : : : , D}. By construction, we have ensured that for each ε ∈ {�1, 1}D�d and z ∈ {�1, 1}, the observations 
have means

E[L(ε,z)i ] � L(ε,z) and E[b(ε,z)i ] � b(ε,z):

This concludes our description of the problem instances themselves. Because our proof proceeds via Le Cam’s 
lemma, we require some more notation for product distributions and mixtures under this observation model. Let 
P(n)ε,z denote the n-fold product of the probability laws of the pair (L(ε,z)i , b(ε,z)i ). We also define the following mix
ture of product measures for each z ∈ {�1, 1}:

P(n)z :�
1

2D�d

X

ε∈{61}D�d

P(n)ε,z :

We seek bounds on the total variation distance dTV(P(n)1 ,P(n)�1).
With this setup, the following lemmas assert that (a) our construction satisfies the conditions in Assumption 

1B, and (b) the total variation distance is small provided n≲
ffiffiffiffiffiffiffiffiffiffiffiffi
D� d
√

.

Lemma 7. For each binary string ε ∈ {�1, 1}D�d and bit z ∈ {�1, 1}, we have the following. 
(a) The population-level matrix L(ε,z) defined in Equation (57) satisfies |||L(ε,z)|||X ≤ γmax.
(b) The random observations (L(ε,z)i , b(ε,z)i ) defined in Equation (59) satisfy Assumption 1B for any scalar pair (σL,σb) such 

that σL ≥ γmax and σb ≥ δ.

Lemma 8. Under the above-mentioned setup, we have dTV(P(n)1 ,P(n)�1) ≤
12n2

D�d.

See Appendices B.1 and B.2 in the online supplementary file for the proofs of Lemmas 7 and 8, respectively.
Part (a) of Lemma 7 and Equations (58a) and (58b) together ensure that population-level problem instance 
(L, b) we constructed belongs to the class Capprox(M0, h0, D,δ,γmax). Part (b) of Lemma 7 further ensures the proba
bility distribution PL,b belongs to the class Gvar(σL,σb). Lemma 8 ensures that the two mixture distributions corre
sponding to different choices of the bit z are close, provided n is not too large. The final step in applying Le 
Cam’s mixture-versus-mixture result is to show that the approximation error is large for at least one of the 
choices of the bit z. We carry out this step by splitting the rest of the proof into two cases, depending on whether 
we enforce that our estimator v̂ is constrained to lie in the subspace S. Throughout, we use the decomposition 

v̂ � [ v̂1
v̂2
], where v̂1 ∈ Rd and v̂2 ∈ RD�d. Also recall the definition of the vector y from Equation (55).

Case 1: v̂ ∈ S.This corresponds to the “proper learning” case where the estimator is restricted to take values in 
the subspace S and v̂2 � 0. Note that for any ε ∈ {�1, 1}D�d, we have

||v∗ε,z� v̂||2 � ||v∗ε,z�ΠS(v
∗
ε,z)||

2
+ ||v∗ε,z� v̂||2 � δ2 +

1
2d ||v̂1�

ffiffiffiffiffi
2d
√

zy||22:

Therefore, for any ε,ε′ ∈ {�1, 1}D�d, the following chain of inequalities holds:
1
2 (||v

∗
ε,1� v̂||2 + ||v∗ε′,�1� v̂||2) � δ2 +

1
4d (||v̂1�

ffiffiffiffiffi
2d
√

y||22 + ||v̂1 +
ffiffiffiffiffi
2d
√

y||22)

� δ2 +
1

2d
(||v̂1||

2
2 + 2d||y||22)

≥ δ2 + ||y||22 � α(M0,γmax) · δ
2:
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By Le Cam’s lemma, we thus have

inf
v̂n∈V̂S

sup
(L, b) ∈ Capprox

PL,b ∈ Gvar(σL,σb)

E||v̂n � v∗||2 ≥ α(M0,γmax)δ
2 · (1� dTV(P(n)�1,P(n)1 ))

≥
(i)
(1� ω) · α(M0,γmax) · δ

2, 

where in step (i), we have applied Lemma 8 in conjunction with the inequality D ≥ d+ 12n2

ω .
Case 2: v̂ ∉ S.This corresponds to the case of “improper learning” where the estimator can take values in the 

entire space X. In this case, for any pair ε,ε′ ∈ {�1, 1}D�d, we obtain

||v∗ε,1� v∗ε′,�1|| ≥ ||[2
ffiffiffiffiffi
2d
√

y⊤ 0 ⋯ 0 ]⊤|| � 2||y||2 � 2δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α(M0,γmax)� 1
q

:

Applying triangle inequality and Young’s inequality yields the bound
1
2 (||v̂ � v∗ε,1||

2
+ ||v̂ � v∗ε′,1||

2
) ≥

1
4 (||v̂ � v∗ε,1|| + ||v̂ � v∗ε′,1||)

2

≥
1
4 ||v

∗
ε,1 � v∗ε′,�1||

2
≥ (α(M0,γmax)� 1) · δ2:

By Le Cam’s lemma, we once again have

inf
v̂n∈V̂X

sup
(L, b) ∈ Capprox

PL,b ∈ Gvar(σL,σb)

E||v̂n � v∗||2 ≥ (α(M0,γmax)� 1) · δ2 · (1� dTV(P(n)�1,P(n)1 ))

≥ (1� ω) · (α(M0,γmax)� 1) · δ2:

Putting together the two cases completes the proof.

6. Discussion
In this paper, we studied methods for computing approximate solutions to fixed-point equations in Hilbert 
spaces using methods that search over low-dimensional subspaces of the Hilbert space and that operate on sto
chastic observations of the problem data. We analyzed a standard stochastic approximation scheme involving 
Polyak–Ruppert averaging and proved nonasymptotic instance-dependent upper bounds on its mean-squared 
error. This upper bound involved a pure approximation error term, reflecting the discrepancy induced by search
ing over a finite-dimensional subspace as opposed to the Hilbert space, and an estimation error term, induced by 
the noisiness in the observations. We complemented this upper bound with an information-theoretic analysis 
that established instance-dependent lower bounds for both the approximation error and the estimation error. A 
noteworthy consequence of our analysis is that the optimal approximation factor in the oracle inequality is nei
ther unity nor constant but a quantity depending on the projected population-level operator. By applying our 
general theorems, we showed oracle inequalities for three specific examples in statistical estimation: linear 
regression on a linear subspace, Galerkin methods for elliptic PDEs, and value function estimation via temporal 
difference methods in Markov reward processes.

The results of this paper leave open a number of directions for future work: 
• This paper focused on the case of independently drawn observations. Another observation model, one that 

arises naturally in the context of reinforcement learning, is the Markov observation model. As discussed in Section 
2.2.3, consider the problem with L � γP and b � r, where P is a Markov transition kernel, γ is the discount factor, 
and r is the reward function. The observed states and rewards in this setup are given by a single trajectory of the 
Markov chain P, as opposed to being drawn i.i.d. from the stationary distribution. It is known (Tsitsiklis and Van 
Roy [60]) that the resolvent formalism (a.k.a. TD(λ)) leads to an improved approximation factor with larger 
λ ∈ [0, 1). On the other hand, larger choices of λ may lead to larger variance and slower convergence for the sto
chastic approximation estimator, and a model selection problem exists (see section 2.2 in Szepesvári [59] for a 
detailed discussion). It is important for future work to extend our fine-grained risk bounds to the case of TD(λ)
methods with Markov data. Leveraging the instance-dependent upper and lower bounds, one can also design and 
analyze estimators that achieve the optimal trade-off.
• This paper focused purely on oracle inequalities defined with respect to a subspace. However, the framework 

of oracle inequalities is far more general; in the context of statistical estimation, one can prove oracle inequalities 
for any star-shaped set with bounds on its metric entropy. (See section 13.3 in the monograph of Wainwright [65] 
for the general mechanism and examples.) For all three examples considered in Section 2.2, one might imagine 

Mou, Pananjady, and Wainwright: Oracle Inequalities for Projected Fixed-Points 
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2308–2336, © 2022 INFORMS 2333 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.9

.6
1.

11
1]

 o
n 

24
 A

pr
il 

20
24

, a
t 0

8:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



approximating solutions using sets with nonlinear structure, such as those defined by ℓ1-constraints, Sobolev ellip
ses, or the function class representable by a given family neural networks. An interesting direction for future work 
is to understand the complexity of projected fixed-point equations defined by such approximating classes.
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Endnotes
1 Note that one can achieve an approximation factor arbitrarily close to 1 provided that n≫D. One way to do so is as follows: form the plug- 
in estimate that solves the original fixed-point relation (1) on the sample averages 1

n
Pn

i�1 Li and 1
n
Pn

i�1 bi, and then project this solution onto 
the subspace S. In this paper, our principal interest—driven by the practical examples of Galerkin approximation and temporal difference 
learning—is in the regime d≪ n≪D.
2 As noted by Bradtke and Barto [12], this method can be understood as an instrumental variable method (Wooldridge [69]), and our results 
also apply to this more general setting.
3 It should be noted that Galerkin methods apply to a broader class of problems, including linear PDEs of parabolic and hyperbolic type 
(Larsson and Thomée [34]), as well as kernel integral equations (Polydorides et al. [48, 49]).
4 As a side remark, we note that our noise conditions can be further weakened, if desired, via a minibatching trick. To be precise, given any 
problem instance PL,b ∈Gvar(σL,σb) and any integer m > 0, one could treat the sample mean of m independent samples as a single sample, 
resulting in a problem instance in the class Gvar

σLffiffiffi
m
√ , σbffiffiffi

m
√

� �
. The same lower bound still applies to the class Gvar

σLffiffiffi
m
√ , σbffiffiffi

m
√

� �
, at a cost of stronger 

dimension requirement D ≥ d+ 12
ω n2m2.

5 Note that the stochastic approximation iterates are invariant under translation, and consequently, we can assume, without loss of general
ity, that v � 0.
6 In the typical application of finite-element methods, basis functions based on local interpolation are widely used (Brenner and Scott [13]). 
These basis functions can have large sup-norm, but via application of the Walsh–Hadamard transform, a new basis can be obtained satisfying 
Condition (40) with dimension-independent constants. Because the stochastic approximation algorithm is invariant under orthogonal trans
formation, this modification is only for the convenience of analysis and does not change the algorithm itself.
7 Because the functions ψi are linearly independent, we have B ≻ 0.
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[41] Moulines É, Bach FR (2011) Non-asymptotic analysis of stochastic approximation algorithms for machine learning. Shawe-Taylor J, 

Zemel R, Bartlett P, Pereira F, Weinberger KQ, eds. Advances in Neural Information Processing Systems, Vol. 24 (Curran Associates, Red 
Hook, NY), 451–459.
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