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Instance-optimality in optimal value estimation:
Adaptivity via variance-reduced Q-learning
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Abstract—Various algorithms in reinforcement learning
exhibit dramatic variability in their convergence rates and
ultimate accuracy as a function of the problem struc-
ture. Such instance-specific behavior is not captured by
existing global minimax bounds, which are worst-case in
nature. We analyze the problem of estimating optimal
Q-state-action value functions for a discounted Markov
decision process with discrete states and actions; our
main result is to identify an instance-dependent functional
that controls the difficulty of estimation in the ℓ8-norm.
Using a local minimax framework, we show that this
functional arises in lower bounds on the accuracy on any
estimation procedure. We establish the sharpness of these
lower bounds, up to factors logarithmic in the state and
action spaces, by analyzing a variance-reduced version
of Q-learning. Our theory provides a precise way of
distinguishing “easy” problems from “hard” ones in the
context of Q-learning, as illustrated by an ensemble with
a continuum of difficulty.

Index Terms—Reinforcement learning; Q-learning;
stochastic control; minimax lower bounds; instance-
dependent complexity; variance reduction.

I. INTRODUCTION

THE need for data-driven decision-making has
fueled tremendous interest in Markov decision

processes and reinforcement learning (RL). Indeed,

The work of EX was supported in part by a research fellowship
from the NSF Graduate Research Fellowship Program. MJW and
EX were partially funded by Mathematical Data Science program
of the Office of Naval Research under ONR grant N00014-21-1-
2842; National Science Foundation grant NSF-DMS grant 2015454,
and National Science Foundation grant NSF-CCF grant 1955450.
The work of KK was supported by National Science Foundation
grant NSF-DMS grant 2311304. In addition, this work was supported
in part by the Mathematical Data Science program of the Office
of Naval Research under grant number N00014-21-1-2840 to MIJ.
(Corresponding author: Eric Xia).

Eric Xia is with the Department of EECS, MIT, Cambridge, MA
02139 USA (e-mail: ericzxia@mit.edu).

Koulik Khamaru is with the Department of Statistics at Rutgers
Univeresity, Piscataway, NJ 08854.

Martin J. Wainwright is with the Department of EECS and Depart-
ment of Mathematics at MIT, Cambridge, MA 02139 USA, and also
with the Department of EECS and Department of Statistics, University
of California Berkeley, Berkeley, CA 94720.

Michael I. Jordan is with the Department of EECS and Department
of Statistics, University of California Berkeley, Berkeley, CA 94720.

such techniques have found use cases across a wide
range of application domains (e.g., [TFR`17, LFDA16,
SHM`16]). An intriguing fact is that in many applica-
tions, RL algorithms behave far better than the theo-
retical bounds provided by worst-case analyses would
suggest. This gap provides impetus for a more re-
fined instance-specific analysis, one which highlights the
properties of a given instance that render it “easy” or
“difficult.”

Instance-dependent analysis of RL algorithms has
become of substantial interest in recent years [see, e.g.,
SJ19, ZB19, ZKB19, MMM14, PW20, KPR`21]. By
now, we have a fairly refined understanding of instance-
dependence for policy evaluation problems, including
ℓ2-norm bounds on temporal difference (TD) algo-
rithms [BRS18, LS18, DSTM18], instance-dependent ℓ2-
bounds on linear stochastic approximation for Marko-
vian data [MPWB23], as well as bounds for the least-
squares temporal difference (LSTD) estimator in the ℓ8-
norm [PW20]. For the linear problem of evaluating a
given policy, a subset of the current authors [KPR`21]
provided a sharper instance-dependent ℓ8-bounds for a
variance-reduced version of the TDp0q algorithm, and
showed that this algorithm is optimal in a local non-
asymptotic minimax sense.

For TD and LSTD methods, the underlying structure is
linear in nature—in particular, it corresponds to solving
a linear system—a property which greatly facilitates the
analysis. In the current paper we undertake a similar
instance-dependent analysis in the more challenging set-
ting of Q-learning, for which the underlying updates
are non-linear. Our main contributions are to identify
a natural functional of the problem instance and show
that it controls the fundamental difficulty of estimating
optimal Q-value functions. We do so by establishing
non-asymptotic lower bounds within a local minimax
framework and matching those bounds, up to logarithmic
factors, by analyzing a version of variance-reduced Q-
learning [SWW`18, SWWY18, Wai19c].

This work is done in the context of Markov decision
processes (MDPs) with a finite set of states S and a finite
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set of possible actions A. We proceed to provide some
background and notation so as to be able to introduce
the functional that plays a central role in our analysis,
and describe our contributions in more detail.

A. Some background

In a Markov decision process, the state s evolves
dynamically in time under the influence of the actions.
More precisely, there is a collection of probability tran-
sition kernels, tPap¨ | sq | ps, aq P S ˆ Au, where
Paps1 | sq denotes the probability of transitioning to
state s1 when the action a is taken at the current state s.
In addition, an MDP is equipped with a reward function
r that maps every state-action pair ps, aq to a real number
rps, aq. The reward rps, aq is the reward received upon
performing an action a in the state s. Overall, a given
MDP is characterized by the problem pair pP, rq, along
with a discount factor γ P p0, 1q.

A deterministic policy π is a mapping S Ñ A, such
that πpsq P A indicates the action to be taken in the
state s. The value of a policy is defined by the expected
sum of discounted rewards in an infinite sample path.
For a given policy π and discount factor γ P p0, 1q, the
Q-function is given by

Qπps, aq :“ Eπ

«

8
ÿ

k“0

γkrpsk, akq | s0 “ s, a0 “ a

ff

,

where ak “ πpskq for all k ě 1.
(1)

When both the state space S and action space A are
finite, the Q-function Q can be conveniently represented
as an element of R|S|ˆ|A|. It is possible to consider
randomized policies but for the goal of estimating the
optimal Q-function, the distinction between randomized
and deterministic policies is irrelevant.

There are various observation models in reinforcement
learning, and in this paper we study the generative
setting in which we have the ability to draw next-state
samples from the MDP when initialized with an arbitrary
state-action pair ps, aq. More precisely, we are given a
collection of N i.i.d. samples of the form tpZk, RkquNk“1,
where Rk is a matrix in R|S|ˆ|A|, and Zk is a collection
of |A| matrices in R|S|ˆ|S| indexed by A. We denote by
Zk,ap¨ | sq the row-vector corresponding to a transition
starting from state s and action a; computed by sampling
from the transition kernel Pap¨ | sq, independently of
all other state action pairs ps, aq and making the entry
corresponding to the next state 1, and the remaining
entries 0. Concretely, we write

s1 „ Pap¨ | sq and Zk,ap¨ | sq “ 1s“s1 .

For convenience, we may drop the dependence on k
when it is clear we are referring to a single sample.
The entry Zkps, aq is drawn according to the transition
kernel Pap¨ | sq, whereas the entry Rkps, aq is a random
variable with mean rps, aq and σr-sub-Gaussian tails,
corresponding to a noisy observation of the reward
function. Here the rewards tRkps, aqups,aqPSˆA are inde-
pendent across the all state-action pairs, and the random
rewards tRku are independent of the randomness in
tZku.

Based on the observations, our goal is to estimate
the optimal state-action-value function Q‹, along with
an optimal policy π‹. From the classical theory of
MDPs [Put14, SB18, Ber09], the optimal Q-function is
a fixed point of the Bellman (optimality) operator T, a
map from R|S|ˆ|A| to itself given by

TpQqps, aq :“ rps, aq ` γ
ÿ

s1PS
Paps1 | sqmax

a1PA
Qps1, a1q.

(2)

An optimal policy π‹ can be obtained from the
optimal Q-function Q‹ via the maximization
π‹psq P argmax

aPA
Q‹ps, aq. In this paper, we measure the

quality of a given estimate pQ in terms of the ℓ8-norm
error

} pQ ´ Q‹}8 “ max
ps,aq

| pQps, aq ´ Q‹ps, aq|. (3)

B. Contributions of this paper
The main contribution of this paper is to show that

for a given MDP, the difficulty of estimating the optimal
Q-value function in ℓ8-norm is characterized by a par-
ticular functional of the problem instance pP, rq, defined
here.

a) An instance-dependent functional: Given a sam-
ple pZ, Rq from our observation model, we can define
the single-sample empirical Bellman operator evaluated
at ps, aq as

pTpQqps, aq :“ Rps, aq ` γ
ÿ

s1PS
Zaps1 | sqmax

a1PA
Qps1, a1q,

(4)

where we have introduced the notation Zaps1 | sq :“

1Zps,aq“s1 .
Note that for any fixed Q-function Q, the difference

pTpQq ´TpQq is a zero-mean random matrix, and a key
object in this paper is the matrix ν P R|S|ˆ|A| with
entries
νpπ;P, r, γqps, aq

:“

c

Var
´

`

I ´ γPπ
˘´1`

ppT ´ TqpQ‹q
˘

ps, aq

¯

.

(5)

2
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More explicitly, the quantity Pπ is a right-linear map-
ping of R|S|ˆ|A| to itself, given by:

PπQps, aq :“
ÿ

s1PS
Paps1 | sq ¨ Qps1, πps1qq

for each ps, aq P S ˆ A,
(6)

and the square-root and variance operators in equa-
tion (5) are applied elementwise.

Let us provide some intuition as to why νpπ;P, r, γq

plays a fundamental role. The appearance of the zero
mean term pTpQ‹q ´ TpQ‹q is natural: it reflects the
noise present in the empirical Bellman operator (4) as
an estimate of the population Bellman operator (2). As
for the pre-factor pI ´ γPπq´1, the Neumann series
expansion allows us to write

pI ´ γPπq´1 “

8
ÿ

k“0

pγPπqk.

The sum of the powers of γPπ account for the com-
pounded effect of an initial perturbation when following
the Markov chain specified by the policy π.

b) Upper and lower bounds: With these definitions
in place, the core of our work involves proving—via a
combination of a lower and an upper bound matching
up to logarithmic factors—that the instance-specific dif-
ficulty of estimating the Q-function is captured by the
quantity maxπPΠ‹ }νpπ;P, r, γq}8. Here Π‹ denotes
the set of all optimal policies for the MDP instance
pP, rq. This functional exhibits a wide range of behav-
iors: in Example 1 to follow in Section II-A2, we exhibit
a very simple family of MDPs pPλ, rλq, parameterized
by a scalar λ ě 0, such that

max
πPΠ‹

}νpπ;Pλ, rλ, γq}8 —

´ 1

1 ´ γ

¯

3
2´λ

. (7)

The setting λ “ 0 recovers a “hard” instance, one for
which the global minimax bound for estimation of Q-
functions, known from past work [AMK13] on batched
Q-learning, is sharp. For these hard instances, the sample
complexity1 grows cubically as H3 in the effective
horizon H “ 1{p1´ γq. On the other hand, as λ grows,
the problems in this family become progressively easier,
so that the global minimax bound is no longer sharp.

In more detail, we prove a non-asymptotic lower
bound, stated as Theorem 1 to follow, by adapting a
particular definition of local minimax risk studied in
past work on shape-constrained estimation [CL15]. The
central challenge in this proof is that perturbations to

1The sample complexity Npϵ, γq refers to the number of samples
required to achieve an ϵ-accurate solution in ℓ8-norm; we obtain the
cubic H3 scaling—instead of H3{2 as appears in the bound (7) with
λ “ 0—since the sample size depends scales as

?
N .

the transition matrices of a given MDP change not only
the transitions themselves, but also the structure of the
optimal policies. Asymptotic versions of local minimax
rates in statistics dates back to the seminal works of Le
Cam and Hayek (see chapter 8 in the book [Vaa98]).
The paper [DR21] studies such guarantees for optimiza-
tion. For reinforcement learning settings, non-asymptotic
guarantees for policy evaluation have been established in
the paper [KPR`21]; see that paper for further motiva-
tion and details.

In order to prove matching upper bounds, given the
role of the empirical operators pT in our lower bound—
used in the classical Q-learning algorithm [WD92,
Tsi94, Sze97, JJS94]—a natural thought would be to
analyze this operator directly. However, a line of past
work [Wai19b, LCC`24] has revealed the interesting fact
that classical Q-learning algorithm—despite its wide-
spread use—is actually sub-optimal, even when as-
sessed when using the coarser metric of global minimax.
In particular, Wainwright [Wai19b] provided numerical
evidence of problems for which standard Q-learning
has ℓ8-norm sample complexity growing at least as
fast as H4 in the effective horizon H “ 1{p1 ´ γq.
This should be contrasted with the global minimax
theory [AMK13], for which (as discussed following
equation (7)) the optimal scaling is H3. Subsequent work
by Li et al. [LCC`24] proved that the H4-scaling is
actually unavoidable for standard Q-learning, so that it
is a sub-optimal procedure even in a global minimax
sense.

Thus, in order to obtain a sharp upper bound, we need
to analyze a more sophisticated procedure. In particular,
we turn to the variance-reduced forms of Q-learning, as
introduced in past work [SWW`18, SWWY18, Wai19c]
and shown to be optimal in a globally minimax sense.
Our main contribution is to show that under certain
structural conditions and lower bounds on the sample
size, there is a form of variance-reduced Q-learning that
achieves our instance-dependent lower bound up to a
logarithmic factor. These upper bounds, stated precisely
in Theorem 2, confirm that our lower bound technique
has extracted a useful form of instance dependence for
estimating optimal Q-functions.

c) Other connections to the literature: The gener-
ative setting studied in this paper was first introduced
and analyzed in the paper [KS02]. It has been the sub-
ject of much prior work in model-based reinforcement
learning. For instance, in the generative setting, a plug-
in approach is known to be optimal for estimating the
Q-function [AKY20, LWC`20], where here optimality
is measured in the global minimax sense. In contrast,
our results apply to the model-free setting, and our
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guarantees—rather than being global over a large model
class—are specific to the particular MDP instance that
is given. As we illustrate in the sequel, the instance-
dependent functional identified by our theory exhibits
substantial variation across the space of possible MDPs.
Of course, its worst-case behavior matches the global
minimax theory, but there are many problems that are
substantially easier, and an algorithm that adapts to
problem structure will behave very differently than the
global minimax prediction. We also note that there also is
a vast literature on Q-learning in more general settings,
with some examples including DQN [FWXY20], regret
minimization in tabular setting [JAZBJ18], and regret
minimization in linear MDPs [JYWJ20].

d) Notation: For a positive integer n, we use the
shorthand rns :“ t1, 2, . . . nu. For a finite set S, we use
|S| to denote its cardinality. We use c1, c2, . . . to denote
universal constants that may change from line to line.
For any pair of vectors or matrices pv, wq with matching
dimension(s), we write that v ľ w to imply v ´ w has
only non-negative entries, and v ĺ w is defined similarly.
We let |u| denote the entrywise absolute value of a vector
u P Rn or a matrix u P Rmˆn; we use |u|` to denote the
entry-wise positive part of u. For any vector or matrix u,
we let }u}8 denote the maximum absolute value taken
over all entries of u, and }u}span “ maxj uj ´ minj uj

denote the span seminorm. For a continuous operator
P : Rmˆn Ñ Rmˆn, its ℓ8-operator norm is given
by |||P |||8Ñ8 “ sup}u}8“1 }Pu}8. We often identify a
Q-value function with its matrix representation and use
}Q}8 to denote the infinity norm (i.e., largest entry in
absolute terms). In the matrix representation of Q, its
rows and columns are indexed via an enumeration of the
states and actions, respectively. We use the symbol Á to
denote a relation that holds up to logarithmic factors in
the problem parameters.

II. MAIN RESULTS

In this section, we provide precise statements of the
main results of this paper, along with a discussion of
some of their consequences. In Section II-A, we define
a notion of local non-asymptotic minimax risk, and then
state Theorem 1, which provides such a lower bound for
estimating optimal Q-value functions. In Section II-B,
we turn to the complementary problem of deriving
achievable results. Theorem 2 shows that under certain
structural conditions on the policies, there is a form
of variance-reduced Q-learning that achieves the local
minimax risk up to logarithmic factors.

A. Instance-dependent lower bounds

In this section, we state a non-asymptotic lower bound
for estimating optimal Q-function in the ℓ8-norm. This
lower bound, to be stated in Theorem 1, is instance-
dependent, meaning that it depends on the particular
instance of the MDP pP, rq at hand. This dependence
should be contrasted with classical global minimax
bounds, which are oblivious to such local properties.

The starting point of our lower bound development
is the two-point framework introduced by Cai and
Low [CL15] for local minimax bounds for nonparametric
shape-constrained inference; here we adapt it to our
current setting. Focusing on the ℓ8-norm error metric,
the local non-asymptotic minimax risk for estimating
the value function QpPq associated with an instance
P “ pP, rq is defined as

MN pPq :“ sup
P 1

inf
Q̂N

max
IPtP,P 1u

?
N EI

“

}Q̂N ´ QpIq}8

‰

.

(8)

Here the infimum is taken over all estimators Q̂N that are
measurable functions of the N i.i.d. observations drawn
according to our observation model (see Section I-A).

The intuition underlying the definition (8) is that given
an instance P , the adversary behaves as follows: it
extracts the hardest alternative P 1 relative to P , and then
measures the worst-case risk over P and this alternative
P 1.

1) Lower bounds for Q-function estimation: We now
turn to the statement of some lower bounds for estimat-
ing the optimal Q-function. Recall the definition (6) of
the operator Pπ , along with the functional νpπ;P, r, γq

from equation (5). We let ν2pπ;P, r, γq denote the
matrix obtained by taking squares entrywise. Our first
step is to provide a decomposition of this matrix into
two separate components, corresponding to the noisiness
in the reward function observation and transition matrix
observations, respectively.

In order to deal with the latter source of noise, with a
slight abuse of notation, we use the observed matrix Z to
define a stochastic analog of Pπ—namely, the (random)
right-linear operator

pZπQqps, aq :“
ÿ

s1PS
Zaps1 | sq ¨ Qps1, πps1qq,

where Zaps1 | sq :“ 1Zps,aq“s1 .

(9)

By assumption, the randomness in our observations of
the reward and transitions are independent, so that for

4

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3386122

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MIT. Downloaded on December 30,2024 at 17:10:03 UTC from IEEE Xplore.  Restrictions apply. 



any optimal2 policy π, we have the decomposition

ν2pπ;P, rqps, aq “ γ2ρ2pπ;P, rqps, aq

` σ2pπ;P, rqps, aq.
(10a)

Here we define

ρ2pπ;P, rq :“ Var
`

pI ´ γPπq´1pZπ
´ PπqQ‹

˘

,
(10b)

σ2pπ;P, rq :“ Var
`

pI ´ γPπq´1pR ´ rq
˘

, (10c)

where we compute the variances in an elementwise
sense.

With this notation, we have the following guarantee:

Theorem 1. There exists a universal constant c ą 0
such that for any instance P “ pP, rq, the local non-
asymptotic minimax risk is lower bounded as

MN pPq ě cmax
πPΠ‹

}νpπ;P, r, γq}8. (11a)

This bound is valid for all sample sizes N ě N0, where

N0 :“ max

#

2γ2

p1 ´ γq2
,

2}Q‹}2span

p1 ´ γq2}ρ2pπ‹;P, rq}8

+

,

(11b)

and π‹ P argmaxπPΠ‹ }νpπ;P, rq}8.

See Section III for the proof of this claim. The main
take-away is that the functional max

πPΠ‹
}νpπ;P, r, γq}8

controls the local minimax risk. In order to gain intuition
for this claim, it is worth exploring the range of possible
behaviors exhibited by the functional appearing in the
lower bound (11a).

2) Exploring the range of possible behaviors: A first
point of comparison is between the instance-dependent
lower bound from Theorem 2 with the existing minimax
lower bounds for Q-learning. Azar et al. [AMK13]
proved a global minimax lower bound on the ℓ8-norm
error for estimating the optimal Q-function. They ex-
hibited a family of γ-discounted MDPs for which the
ℓ8-error of any procedure is lower bounded by the
quantity 1

p1´γq3{2 ¨ 1?
N

, up to logarithmic factors in
dimension. In terms of the number of samples Npϵq
required to achieve an ϵ-accurate solution in the ℓ8-
norm, this worst-case result scales as H3 in the effective
horizon H “ 1{p1 ´ γq.

This lower bound is optimal in a globally minimax
sense, and it is worthwhile understanding the properties

2Optimality of π is required so that TpQ‹q “ r ` γPπQ‹, with a
similar relation for the empirical Bellman operator.

of instances that exhibit this worst-case behavior: con-
cretely, for such worst-case problems, we must have a
scaling of the form

max
πPΠ‹

}νpπ;P, r, γq}8 — 1
p1´γq1.5

.

On the flipside, it also worthwhile understanding the
properties of problems that are much “easier” than this
worst-case theory would suggest.

The following construction, which takes inspiration
from the papers [PW20, KPR`21], allows us to explore
this continuum in an illuminating fashion:

Example 1 (A continuum of local minimax risks).
Consider an MDP with two states ts1, s2u, two actions
ta1, a2u, and with transition functions and reward func-
tions given by

Pa1 “

„

p 1 ´ p
0 1

ȷ

, Pa2 “

„

1 0
0 1

ȷ

,

and r “

„

1 0
τ 0

ȷ

.

(12)

We assume that there is no randomness in the rewards.
Here the pair pp, τq along with the discount factor γ are
parameters of the construction, and we consider a sub-
family of these parameters indexed by a non-negative
scalar λ. For any λ ě 0 and discount factor γ P p 1

4 , 1q,
consider the settings

p “
4γ ´ 1

3γ
, and τ “ 1 ´ p1 ´ γqλ.

With these choices, the optimal state-action-value func-
tion Q‹ takes the form

Q‹ “

„ 1
4 ¨ 3`τ

1´γ
γ
4 ¨ 3`τ

1´γ
τ

1´γ
γτ
1´γ

ȷ

,

with an unique optimal policy π‹ps1q “ π‹ps2q “ a1.
We can then compute that

max
π‹PΠ‹

}νpπ‹;Pλ, rλq}8 “ c ¨

ˆ

1

1 ´ γ

˙1.5´λ

. (13)

See Appendix A for the details of this calculation.
Substituting the expression (13) into equation (11a)

yields that the local minimax risk is lower bounded as
MN pPq ě c 1

p1´γq1.5´λ . Consequently, for λ ą 0, our
lower bounds suggest it should be possible to estimate
the optimal Q-function more accurately by a factor
p1 ´ γqλ. To be clear, this is not merely a constant factor
difference in the ratio of “easy” to “hard”; it is a function
depending on the discount factor γ, and it diverges to
infinity as γ Ñ 1 from below.

5
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B. Instance-dependent upper bounds

Thus far, we have stated some instance-dependent
lower bounds on the sample complexity of estimating Q-
value functions. As we saw in the preceding Example 1,
these lower bounds exhibit a wide range of behavior
depending on the structure of the transition functions,
discount parameter and reward functions. However, these
differences in the lower bounds are only interesting if we
can show that they are optimal, meaning that there is a
(hopefully practical) algorithm that matches the behavior
predicted by the lower bounds.

In this section we close this gap, in particular via a
careful analysis of variance-reduced Q-learning (or VR-
QL for short). Variance-reduced forms of Q-learning
have been proposed and shown to be globally minimax in
previous work [SWW`18, SWWY18, Wai19c]; the ver-
sion analyzed here is adapted from the paper [Wai19c].
In Theorem 2, we show that the VR-QL algorithm is
instance-optimal up to logarithmic factors under two
different sets of assumptions.

1) From standard to variance-reduced Q-learning:
The classical Q-learning algorithm is a stochastic ap-
proximation algorithm for estimating the unique fixed
point Q‹ of the Bellman operator T. Recall the defini-
tion (4) of the empirical Bellman operator pTk. At each
iteration k “ 1, 2, . . ., standard Q-learning performs an
update of the form

Qk`1 “ p1 ´ αkqQk ` αk
pTkpQkq, (14)

where αk P p0, 1q is a stepsize parameter. Appropriately
decaying choices of the stepsize ensure that the estimate
Qk converges to Q‹. Unfortunately, the convergence rate
is known to be non-optimal, failing to achieve the global
minimax rate [Wai19b, LCC`24], let alone the finer-
grained instance-dependent requirements in this paper.
This non-optimality has to do with the rate at which
variance accumulates as the procedure is run.

Variance reduction is a general principle that can
be applied to stochastic approximation schemes so as
to accelerate their convergence. Here we describe the
variance-reduced version of Q-learning that we analyze
here. Similar to standard variance-reduced schemes for
stochastic optimization [see, e.g., JZ13], the algorithm
consists of a sequence of epochs. Within each epoch,
we run a re-centered version of the QL update. The re-
centering is done in such a way, using a Monte Carlo
approximation of the population Bellman operator T,
so that the re-centered updates have lower variance. We
leave the details of the epochs and Monte Carlo to
Section II-B4; here let us describe the basic form of
the updates within a given epoch.

Suppose that we run the algorithm using a total of M
epochs. At epoch m, the algorithm uses a re-centering
point Qm in order to re-center the update, where Qm acts
as the current best estimate of Q‹. Ideally, we should re-
center the operator pTk using the quantity TpQmq, but
we lack the access to it; instead, we use the Monte Carlo
approximation

TNm
pQmq :“

1

Nm

ÿ

iPDm

pTipQmq. (15)

Given the pair pQm,TNm
pQqq and a stepsize parameter

α P p0, 1q, we define the variance-reduced Q-learning
update Q ÞÑ Vk

`

Q;α,Qm,TNm

˘

, where

Vk

`

Q;α,Qm,TNm

˘

:“ p1 ´ αqQ ` αpSkpQ,Qmq

(16)

with

pSkpQ,Qmq :“

!

pTkpQq ´ pTkpQmq ` TNm
pQmq

)

.

The operator pTk is independent of the set of operators
tpTiuiPDm

, used to compute the Monte Carlo approxi-
mation TNm

. As a result, the stochastic operator pTk is
independent of the re-centering quantity TNmpQmq. See
Section II-B4 for the details on how the epoch lengths
and re-centering sample sizes Dm are chosen.

2) Non-asymptotic guarantees for variance-reduced
Q-learning: In this section, we state some non-
asymptotic guarantees for the VR-QL algorithm. We
provide guarantees under a condition which involves the
structure of the set of optimal policies. We begin by
introducing some definitions that underlie this condition.

Given an MDP instance pP, rq, we define the optimal-
ity gap

∆ :“ min
πPΠzΠ‹

}Q‹ ´ tr ` γPπQ‹u}8, (17)

where Q‹,Π‹, and Π, respectively, denote the optimal
Q-function, the set of optimal policies, and the set of
all policies for the MDP pP, rq. Observe that the scalar
∆ captures the difficulty in detecting the set of optimal
policies. In other words, when ∆ is small, it is hard to
distinguish an optimal policy from a suboptimal policy.

For any Q-value function Q, we say that a policy π is
greedy with respect to Q if πpsq P argmaxaPA Qps, aq

for all s P S. Note that any policy π‹ that is greedy with
respect to the optimal Q-value function Q‹ is an optimal
policy.

6
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With these definitions in place, we place the following
lower bound on the sample size: there is some β ą 0
such that

N

plogNq2
ě c2 logpD{δq ¨

p1 ` }r}8 ` σr

?
1 ´ γq2

p1 ´ γq3

¨ maxt1,
1

∆2p1 ´ γqβ
u.

(18)

We assume that we are given an initial point Q1 such
that

}Q1 ´ Q‹}8 ď
}r}8

?
1 ´ γ

. (19)

Such an initial condition has already been used in the
literature [Wai19c], and it can be ensured by first running
Algorithm VR-QL for a total of 1

p1´γq3
samples (up to

logarithmic factor corrections).

Theorem 2. There is a choice of epoch parameters such
that given any discount parameter γ P r 12 , 1q and an ini-
tial point Q1 satisfying the sample size requirement (18)
and initialization condition (19), Algorithm VR-QL run
for M :“ log4

´

Np1´γq
2

8 logpp16D{δq¨logNq

¯

epochs yields an

estimate QM`1 such that

}QM`1 ´ Q‹}8 ď c0 ¨

c

log4p8DM |Π‹|{δq

N
¨ max
π‹PΠ‹

}νpπ‹;P, r, γq}8

` c1 ¨
log4p8DM |Π‹|{δq

N
¨

}Q‹}span

1 ´ γ
,

(20)

with probability exceeding 1 ´ δ.

See Section IV for the proof of this claim.
a) Comparing the upper and lower bounds: When

both the lower bounds on the sample sizes from The-
orems 1 and 2 hold, we can see that the guarantees
from both theorems match up to logarithmic factors
(and higher-order terms), and consequently, the VR-
QL algorithm is instance optimal. However the guar-
antee in Theorem 2 holds under a more stringent
condition on N which depends on the optimality gap ∆,
as compared to the relatively mild sample size condition
of Theorem 1. Closing this gap between the differences
in restrictions on N is a worthwhile goal for future work.
We conjecture that the sample size dependence on ∆ in
Theorem 2 can be removed.

b) Usefulness of the bounds: There exists a
separate line of work [XKWJ23] that is focused
on estimating functionals of the form similar to

maxπ‹PΠ‹ }νpπ‹;P, r, γq}8 and using estimates for in-
ferential purposes and early stopping. The authors ex-
hibit substantial savings in the number of samples re-
quired to reach a target threshold by taking advantage
of the fact that maxπ‹PΠ‹ }νpπ‹;P, r, γq}8 can be much
smaller than the global minimax rate.

3) Confirming the theoretical predictions: Some nu-
merical experiments are helpful in order to illustrate
instance-adaptive behavior guaranteed by Theorem 2.
Recall the family of MDPs (12) from Example 1.
Suppose that we set λ “ 0.5 and for each choice of
γ P p1{2, 1q, we collect N “ r 16¨32

9
1

p1´γq3¨
s samples,

and then run the VR-QL algorithm over a range of dis-
count parameters γ, using the settings from Theorem 2
and Section II-B4, thereby obtaining an estimate QM`1.

Figure 1(a) plots the evolution of log ℓ8-norm error
of the estimate over time as the algorithm proceeds; the
form of these curves show the epoch-based nature of the
convergence. See Section II-B4 for more details on the
parameters of the epochs, including the base parameter
illustrated here. Plotted as blue circles in panel (b) of
Figure 1 are the logarithm of the ℓ8-norm error of the
final output; that is, log }QM`1 ´ Q‹}8 versus logpHq

of the effective horizon H “ 1{p1 ´ γq. Each point in
this plot represents an average over 1000 trials.

In terms of theory, with the settings given above,
existing worst-case bounds [AMK13, Wai19c] predict
that the log ℓ8-norm error remains constant as the
log discount complexity grows; accordingly, we have
plotted a dotted red line with slope zero to illustrate
the worst-case guarantee. On the other hand, for the
MDP instance (12) with λ “ 0.5, a simple calculation
yields that for the instance (12) the suboptimality gap ∆

satisfies ∆ “ 1 ´
p1´γq

λ

4 ě 3
4 . In our experiment, we set

the sample size to be N “ r 32
p1´γq3

¨ 42

32 s ě 32
p1´γq3¨∆2 ; as

a result, the bounds from Theorems 1 and 2 are valid.
With the setting λ “ 0.5, our calculations from

Example 1 yield

max
π‹PΠ‹

}νpπ‹;P, r, γq}8 —

´

1
1´γ

¯´0.5

.

Thus, with the choice of sample size N given above, our
theory predicts that the log ℓ8-norm error should exhibit
the scaling

log }QM`1 ´ Q‹}8

— log

ˆ

1
?
N

max
π‹PΠ‹

}νpπ‹;P, r, γq}8

˙

— ´0.5 log
`

1
1´γ

˘

` c,

where c is a constant. In Figure 1(b), we plot the lower
bound from Theorem 1 as a solid red line, and the upper

7
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Fig. 1. (a) λ “ 0.5, N “ r 32
p1´γq3¨

¨ 42

32
s γ “ 0.9. Illustration of the qualitative behavior of Algorithm VR-QL

applied on the MDP (1) along with instance dependent and the worst case bounds. The figure plots the log ℓ8-error
}Q̄M`1 ´ Q‹

}8 against the log discount complexity factor logp 1
1´γ

q with λ “ 0.5. We have also plotted the least-
squares fit through these points, and the instance-dependent lower bound from Theorem 1, the instance-dependent upper
bound from Theorem 2, and the worst-case bound [Wai19c]. (b) Behavior of the VR-QL algorithm with different
choices of the base b. The plot demonstrates that different choices of the base b yield similar behavior.

bound from Theorem 2 as a dashed green line. (While
these lines both have slope ´0.50, the intercept term c
is different due to the additional logarithmic factors in
dimension present in the upper bound.)

In order to test how the empirical behavior conforms
to the theoretical prediction, we did an ordinary least-
squares fit of the log ℓ8-norm error versus the log
discount complexity; this fit yields a line with slope
pβ “ ´0.45, and is plotted in solid blue. This test shows
good agreement between the theoretical prediction and
the practical behavior.

4) Details of the epochs and procedure: In this sec-
tion, we provide the complete details of the algorithm
used in our version of variance-reduced Q-learning.

a) A single epoch: A single epoch of the overall
variance-reduced QL algorithm involves repeated appli-
cations of the basic variance-reduced update Vk from
equation (16). The epochs are indexed with integers
m “ 1, 2, . . . ,M , where M corresponds to the total
number of epochs to be run. Each epoch m requires
the following four inputs:

‚ an element Q, which is chosen to be the output of
the previous epoch m ´ 1;

‚ a positive integer K denoting the number of steps
within the given epoch;

‚ a positive integer Nm denoting the batch size used
to calculate the Monte Carlo update (15);

‚ a set of fresh operators tpTiuiPCm
, with

|Cm| “ Nm ` K. The set Cm is partitioned
into two subsets having sizes Nm and K,
respectively. The first subset, of size Nm, which
we call Dm, is used to construct the Monte Carlo
approximation (15). The second subset, of size K
is used to run the K steps within the epoch.

We summarize a single epoch in pseudocode form in
Algorithm SingleEpoch.

b) Overall algorithm: The overall algorithm, de-
noted by VR-QL for short, has five inputs: (a) an
initialization Q1, (b) an integer M , denoting the number
of epochs to be run, (c) an integer K, denoting the
length of each epoch, (d) a sequence of batch sizes
tNmuKm“1, denoting the number of operators used for
re-centering in the M epochs, and (e) sample batches
ttpTiuiPCm

uMm“1 to be used in the M epochs. Given these
five inputs, the overall procedure can be summarized as
in Algorithm VR-QL.

c) Settings for Theorem 2: Given a tolerance prob-
ability δ P p0, 1q and the number of available i.i.d.
samples N , we run Algorithm VR-QL with a total of
M :“ log4

´

Np1´γq
2

8 logpp16D{δq¨logNq

¯

epochs, along with the

8
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Algorithm SingleEpoch RunEpoch
pQ;K,Nm, tpTiuiPCm

q

1: Given (a) Epoch length K, (b) Re-centering vector
Q, (c) Re-centering batch size Nm, (d) Operators
tpTiuiPCm

2: Compute the re-centering quantity

TNmpQq :“
1

Nm

ÿ

iPDm

pTipQq

3: Initialize Q1 “ Q
4: for k “ 1, 2, . . . ,K do
5: Compute the variance-reduced update:

Qk`1 “ VkpQk;αk, Q,TNmq

with stepsize αk “
1

1 ` p1 ´ γqk
.

6: end for
7: return QK`1

Algorithm VR-QL

1: Given (a) Initialization Q1, (b) Number of epochs,
M , (c) Epoch length K, (d) Re-centering sample
sizes tNmuMm“1, (e) Sample batches tpTiuiPCm

for
m “ 1, . . . ,M

2: Initialize at Q1

3: for m “ 1, 2, . . . ,M do
4: Qm`1 “ RunEpochpQm;K,Nm, tpTiuiPCmq

5: end for
6: return QM`1 as final estimate

following parameter choices:
Re-centering sizes:

Nm “ c1
4m

p1 ´ γq2
¨ log4p16MD{δq (21a)

Sample batches:

Partition the N samples to obtain tpTiuiPCm

for m “ 1, . . . ,M
(21b)

Epoch length:

K “
N

2M
. (21c)

III. PROOF OF THEOREM 1

Given an MDP instance P “ pP, rq, we start by intro-
ducing the following two classes of alternative MDPs:

S1 “ tP 1 “ pP1, r1q | r1 “ ru,

and S2 “ tP 1 “ pP1, r1q | P1 “ Pu.
(22)

We consider the restricted version of the local minimax
risk at the instance P 1 to the classes Si:

MN pP;Siq “ sup
P 1PSi

inf
Q̂N

max
IPtP,P 1u

?
N ¨ LpQ̂N , Iq, (23)

where we have defined

LpQ̂N , Iq :“ EI}Q̂N ´ QpIq}8.

The main part of the proof involves showing that there
exists a universal constant c ą 0 such that

MN pP;S1q ě c ¨ max
πPΠ‹

}γρpπ;P, rq}8, and (24a)

MN pP;S2q ě c ¨ max
πPΠ‹

}σpπ;P, rq}8, (24b)

where Π‹ denotes the optimal policy set for pP, rq. We
can then conclude

MN pPq ě maxtMN pP;S1q,MN pP;S2qu

ě
1

2
pMN pP;S1q ` MN pP;S2qq

ě
c

2
max
πPΠ‹

}γρpπ;P, rq}8

`
c

2
max
πPΠ‹

}σpπ;P, rq}8

ě
c

2
max
πPΠ‹

}νpπ;P, rq}8.

The last inequality above follows from the decomposi-
tion (10a). It remains to prove the claims (24a) and (24b).
More precisely, the core of our proof involves proving
the following two lemmas:

Lemma 1. For all S P tS1,S2u, we have that
MN pP;Sq ě 1

8MN pP;Sq where we define

MN pP;Sq :“ sup
P 1PS

!?
N ¨ }QpPq ´ QpP 1q}8

| dHel
`

P,P 1
˘

ď
1

2
?
N

*

.

This lemma follows as a fairly straightforward
consequence of the standard reduction from estimation
to testing; see Appendix B-A for the details.

Our next lemma requires more effort to prove, and
leverages the specific structure of the problem at hand:

Lemma 2. Given any MDP instance P “ pP, rq:
(a) There exists an instance P1 “ pP1, rq P S1 such

that dHel pP,P1q ď 1
2

?
N

and
?
N ¨ }QpPq ´ QpP1q}8 ě c ¨ max

πPΠ‹
}γρpπ;P, rq}8.

(b) There exists an instance P2 “ pP, r1q P S2 such
that dHel pP,P2q ď 1

2
?
N

and
?
N ¨ }QpPq ´ QpP2q}8 ě c ¨ max

πPΠ‹
}σpπ;P, rq}8.

9
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Note that the bounds (24a)–(24b) stated in Theorem 1
follow by combining the claims of Lemmas 1 and 2. The
remainder of our proof focuses on establishing Lemma 2.

A. Proof of Lemma 2

In this section, we prove the two parts of Lemma 2.
1) Proof of Lemma 2(a): Throughout the proof, we

use z to denote a generic element of the state-action
set S ˆ A. Let Q be the true Q-function for the MDP
P “ pP, rq. We adopt the shorthands

π1 P arg max
πPΠ‹

}ρpπ;P, rq}8, (25a)

z̄ P arg max
zPSˆA

ρpπ1;P, rq, (25b)

ρ̃pzq :“ ρpπ1;P, rqpzq, (25c)

U :“ pI ´ γPπ1q´1, and (25d)

φ2pzq :“ Var pZπ1Qpzqq . (25e)

To explain this notation, we choose π1 to be the op-
timal policy that achieves the largest ℓ8-norm across
ρpπ˚;P, rq for optimal policies π˚, we let z̄ is the state-
action pair index that achieves the maximal entry of
ρpπ1;P, rq, and we use ρ̃ as convenient shorthand to
refer to the values of ρpπ1;P, rq. This choice of notation
implies that

ρ̃pz̄q “ max
πPΠ‹

}ρpπ;P, rq}8.

Additionally, note that U is a linear transformation from
R|S|ˆ|A| to itself, so we can express the action of U on
Q as

pUQqpzq “
ÿ

z1PSˆA
Uz,z1Qpz1q.

Note moreover that

φ2pzq “
ÿ

s1

Ps1,zpQps1, π1ps1qq ´ pPπ1Qqpzqq2

and ρ̃2pzq “
ÿ

z1

pUz,z1 q2φ2pz1q.
(26)

With these definitions, we now define P̄y,z as follows3:

P̄y,z “ Py,z

ˆ

1 `
Uz̄,z

ρ̃pz̄q
?
2N

pQpy, π1pyqq ´ pPπ1Qqpzqq

˙

(27)

Here we have used the shorthand Py,z ” Papy | sq,
where z “ ps, aq P S ˆ A. Let Q :“ QpP, rq, and
Q̄ :“ QpP̄, rq be the optimal Q functions for MDP
instances pP, rq and pP̄, rq respectively. In the rest of
the proof, we use the following properties of P̄.

3We will prove that this choice is a valid probability transition kernel
shortly.

Lemma 3. For any MDP P “ pP, rq and the optimal
policy π1 defined in equation (25), the following prop-
erties hold:

(a) The operator P̄ is a probability transition kernel.
(b) The MDP instances P “ pP, rq and

P1 “ pP̄, rq satisfy dHel pP,P1q ď 1
2

?
N

and
|||P̄π1 ´ Pπ1 |||8Ñ8 ď 1?

2N
.

(c) Each entry of pI ´ γPπ1q´1rP̄π1 ´ Pπ1sQ is non-
negative.

See Appendix B-B for a proof of this lemma.

Equipped with these tools, we are now ready to lower
bound the norm }Q´ Q̄}8. The optimal Q-functions Q
and Q̄ satisfy the following Bellman equations:

Q “ r ` γPπ1Q and Q̄ “ r ` γP̄π̄Q̄, (28)

where π1 P Π‹ is the optimal policy that achieves
maxπPΠ‹ }ρpπ;P, rq}8, and π̄ is an optimal policy for
pP̄, rq. By the optimality of policy π̄ and the Q-function
Q̄, we have the entrywise inequality P̄π̄Q̄ ľ P̄π1Q̄,
which implies pI ´ γP̄π1qQ̄ ľ pI ´ γP̄π̄qQ̄ “ r. Define
the quantity

∆pπ1q “ pI ´ γP̄π1q´1 ´ pI ´ γPπ1q´1.

Using the identity A´1
1 ´ A´1

0 “ A´1
1 pA0 ´ A1qA´1

0

for invertible operators A0 and A1,

Q̄ ´ Q ľ
“

pI ´ γP̄π1q´1 ´ pI ´ γPπ1q´1
‰

r

“ pI ´ γP̄π1q´1
“

pI ´ γPπ1q ´ pI ´ γP̄π1q
‰

¨ pI ´ γPπ1q´1r

“ γpI ´ γPπ1q´1
“

P̄π1 ´ Pπ1
‰

pI ´ γPπ1q´1r

` γ ¨ ∆pπ1qpP̄π1 ´ Pπ1qpI ´ γPπ1q´1r

“ γpI ´ γPπ1q´1
“

P̄π1 ´ Pπ1
‰

Q

` γ ¨ ∆pπ1qpP̄π1 ´ Pπ1qQ,

where the final equation follows from the Bellman
optimality condition (28). Lemma 3(c) guarantees that
the entries of pI ´ γPπ1q´1rP̄π1 ´ Pπ1sQ are non-
negative, and therefore we conclude

}Q̄ ´ Q}8 ě γ}pI ´ γPπ1q´1rP̄π1 ´ Pπ1sQ}8

´ γ}∆pπ1qpP̄π1 ´ Pπ1qQ}8.
(29)

10
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Consider the second term T2 :“ }∆pπ1qpP̄π1 ´

Pπ1qQ}8. We have

T2 ď |||pI ´ γP̄π1q´1pI ´ γPπ1q ´ I|||8Ñ8

¨ }pI ´ γPπ1q´1pP̄π1 ´ Pπ1qQ}8

“ γ|||pI ´ γP̄π1q´1pP̄π1 ´ Pπ1q|||8Ñ8

¨ }pI ´ γPπ1q´1pP̄π1 ´ Pπ1qQ}8

ď
γ

1 ´ γ
|||P̄π1 ´ Pπ1 |||8Ñ8

¨ }pI ´ γPπ1q´1pP̄π1 ´ Pπ1qQ}8

ď
γ

2
}pI ´ γPπ1q´1pP̄π1 ´ Pπ1qQ}8,

where the last inequality uses Lemma 3(b) and the first
part of the minimum sample size assumption (11b).
Combining this result with the bound (29) we conclude

}Q̄ ´ Q}8 ě
γ

2
}pI ´ γPπ1q´1pP̄π1 ´ Pπ1qQ}8.

With this result in hand, substituting the value of the
transition kernel P̄ from equation (27) and recalling the
definition of state-action pair z from equation (25) we
have

?
N ¨ }Q̄ ´ Q}8 ě

γ
?
N

2
pI ´ γPπ1q´1pP̄π1 ´ Pπ1qQpz̄q

“
γ

?
N

2
?
2

ÿ

z

Uz̄,z ¨ pP̄π1 ´ Pπ1qQpzq

piq
ě

γ

4ρ̃pz̄q

ÿ

z

pUz̄,zq2φ2pzq

piiq
“

γρ̃pz̄q

4
“

1

4
¨ max
πPΠ‹

}γρpπ;P, rq}8,

where step (i) follows by substituting the value of the
transition kernel P̄ (cf. Proof of Lemma 3 part (c)),
and step (ii) follows by using the expression (26). This
completes the proof of part (a) of Lemma 2.

2) Proof of Lemma 2(b): Borrowing the notation
from part (a) of the proof, let z denote a generic
element of the state-action set S ˆ A. Let π2 P

argmaxπPΠ‹ }σpπ;P, rq}8. We use the shorthands

σ2pz̄q :“ max
πPΠ‹

}σpπ;P, rq}28 “ }σpπ2;P, rq}28,

and U :“ pI ´ γPπ2q´1.
(30)

We define our perturbed reward function to be

r̄pzq “ rpzq `
1

σpz̄q
?
2N

Uz̄,zσ
2
r for z P S ˆ A.

(31)

For P2 :“ pP, r̄q, a short computation shows that
the Hellinger distance between the components of the
instance pair pP,P2q takes the form

d2Hel pP,P2q ď DKLpN pr, σ2
rIq | N pr̄, σ2

rIqq

“
1

2σ2
r

}r ´ r̄}22.

Substituting the value of the reward r̄ from equation (31)
yields

d2Hel pP,P2q ď
1

2σ2
r

}r̄ ´ r}22

“
1

σ2pz̄q ¨ 4N

ÿ

z

pUz̄,zq2σ2
r

“
1

4N
,

where the last equality uses the definition

σ2pz̄q “
ÿ

z1

pUz̄,z1 q2σ2
r . (32)

It remains to prove a lower bound on the ℓ8-norm
between the optimal Q-functions for instances P and
P2.

Let Q :“ QpP, rq, and Q̄ :“ QpP, r̄q be the optimal
Q functions for MDP instances P :“ pP, rq and P2 :
“ pP, r̄q, respectively. Note that Q and Q̄ satisfy the
Bellman equations

Q “ r ` γPπ2Q, and Q̄ “ r̄ ` γPπ̄Q̄, (33)

where π̄ is an optimal policy for the MDP instance
pP, r̄q. By the optimality of policy π̄, we have the
entrywise inequality Pπ̄Q̄ ľ Pπ2Q̄; as a result, we have

pI ´ γPπ2qQ̄ ľ r̄ ùñ Q̄ ľ pI ´ γPπ2q´1r̄,

where the last step uses the fact that pI ´ γPπ2q´1 is
entry-wise non-negative. Combining the last inequality
with the Bellman equation (33) we have that

Q̄ ´ Q ľ pI ´ γPπ2q´1pr̄ ´ rq (34)

and that

}pI ´ γPπ2q´1pr̄ ´ rq}8 ě pI ´ γPπ2q´1pr̄ ´ rqpz̄q

“
1

σpz̄q
?
2N

ÿ

z

pUz̄,zq2σ2
r

“
σpz̄q
?
2N

,
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where the last equality uses the relation (32). Putting
together the pieces, we have shown that

}Q̄ ´ Q}8 ě
σpz̄q
?
2N

“
1

?
2N

¨ max
πPΠ‹

}σpπ;P, rq}8,

as desired.

IV. PROOF OF THEOREM 2
In this section, we provide a proof of the upper bounds

stated in Theorem 2. Throughout the proof, we adopt the
following shorthands

τ˚ “ max
π‹PΠ‹

}νpπ‹;P, rq}8 ¨
a

logp8DM |Π‹|{δq,

τmax “
1 ` }r}8 ` σr

?
1 ´ γ

p1 ´ γq1.5
¨
a

logp8DM{δq.

and κ “
}Q‹}span

p1 ´ γq
¨ logp8DM{δq.

(35)

Our proof is based on the following two lemmas
characterizing the behavior of VR-QL across epochs.

Lemma 4. Under the assumptions of Theorem 2, for
each epoch m “ 1, . . . ,M , we have

}Qm`1 ´ Q‹}8 ď
}Qm ´ Q‹}8

16

` c

ˆ

τmax
?
Nm

`
κ

Nm

˙

,

(36)

with probability at least 1 ´ δ
M .

Lemma 4 follows by an argument similar to that used
in the proof of Theorem 1 of the paper [Wai19c],
so we omit the details here. See also the proof of
Lemma 5 for some relevant arguments. We remark
that the paper [Wai19c] uses the lemma to establish
the minimax optimality of VR-QL; however, this is
insufficient for our purposes, given our goal of proving
instance optimality.

Lemma 5. Under the assumptions of Theorem 2,
for epochs m large enough such that the re-
centering sample size Nm satisfies the bound
Nm ě log4p8DM{δq

p1`}r}8`σr
?
1´γq

2

∆2p1´γq3
, we have

}Qm`1 ´ Q‹}8 ď
}Qm ´ Q‹}8

16

` c ¨

ˆ

τ˚

?
Nm

`
κ

Nm

˙

,

(37)

with probability at least 1 ´ δ
M .

See Section IV-B for the proof of Lemma 5.

A. Completing the proof

Using the two lemmas above, we can now complete
the proof of Theorem 2(a). Recalling the epoch sample
size formula (21a)

Nm “ c1
4m

p1 ´ γq2
¨ log4p16MD{δq,

we see that the bound (37) holds for all epochs

m ě m˚ :“ log2
1 ` }r}8 ` σr

?
1 ´ γ

∆
?
1 ´ γ

.

Observe that the minimum sample size requirement from
Theorem 2 ensures that M ě m˚. Now, applying the
recursions (37) and (36) we obtain

}QM`1 ´ Q‹}8

ď
}QM ´ Q‹}8

16
` c

ˆ

τ˚

?
NM

`
κ

NM

˙

piq
ď

}Qm˚ ´ Q‹}8

16M´m˚

` c

¨

˝

M´m˚
ÿ

k“0

τ˚

16k
a

NM´k

`
κ

16k ¨ NM´k

˛

‚

piiq
ď

}Q1 ´ Q‹}8

16M
` c ¨

M
ÿ

k“0

κ

16kNM´k

` c

¨

˝

M´m˚
ÿ

k“0

τ˚

16k
a

NM´k

˛

‚

` c

˜

M
ÿ

k“M´m˚`1

τmax

16k
a

NM´k

¸

piiiq
ď

}Q1 ´ Q‹}8

16M
` c

ˆ

τmax

8M´m˚
¨
?
NM

˙

` c

ˆ

τ˚

?
NM

`
κ

NM

˙

.

Inequality (i) follows via repeated application of the
recursion (37); inequality (ii) follows via repeated appli-
cation of the recursion (36); and inequality (iii) utilizes
the relation NM´k ¨ 4k “ NM (cf. definition (21a)). Via
the union bound, the above inequalities hold simul-
taneously with probability at least 1 ´ δ. Next, note
that by our choice of Nm, we have the inequality
2NM ď N ď 8

3NM . Putting together the pieces, we
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conclude that

}QM`1 ´Q‹}8 ď c}Q1 ´Q‹}8

log2pp8D{δq logNq

N2p1 ´ γq4

`
cp1 ` }r}8 ` σr

?
1 ´ γq4

p1 ´ γq1.5
?
N

¨
log2pp8D{δq ¨ logNq

N3{2p1 ´ γq
9
2∆3

` c

˜

c

log4p8DM |Π‹|{δq

N
max
π‹PΠ‹

}νpπ‹;P, r, γq}8

`
log4p8DM |Π‹|{δq

N
¨

}Q‹}span

1 ´ γ

˙

. (38)

Substituting the lower bound condition

N

log2pNq
ě c logpD{δq

p1 ` }r}8 ` σr

?
1 ´ γq2

p1 ´ γq3

¨ max

"

1,
1

∆2 ¨ p1 ´ γqβ

*

yields the claimed bound. All that remains is to verify
the choice of batch sizes tNmuMM“1 is a valid choice,
i.e., we need to verify that the algorithm VR-QL with
parameter choices (21) uses at most N samples. Recall
that the total number of samples used in the M epochs
is given by KM `

řM
m“1 Nm. Substituting the values

of Nm and M from equations (21) we obtain

KM `

M
ÿ

m“1

Nm ď c log4p8DM{δq

M
ÿ

m“1

4m

p1 ´ γq2
`

N

2

ď c1 log4p8DM{δq
4M

p1 ´ γq2

ď
N

2
`

N

2
ď N.

This completes the proof of Theorem 2(a).
a) Comment on the lower-order terms:: Here, we

argue that the first two terms in the right-hand side of the
bound (38) are of lower order. A careful look at the proof
reveals that for any p ě 1 by increasing our choice of
Nm by a constant factor depending on p, we can bound
the first term by

c1 ¨
}Q1 ´ Q‹}8

Np
¨
logppp8D{δq ¨ logNq

p1 ´ γq2p
,

and the second term by

c2¨
p1 ` }r}8 ` σr

?
1 ´ γq3q`1

p1 ´ γq1.5
?
N

¨
log2qpp8D{δq ¨ logNq

N3q{2p1 ´ γq
9q
2 ∆3q

,

where q “ 2
3p ´ 1

3 , and pc1, c2q are universal constants
only depending on pp, qq. The number of samples
satisfies N Á

p1`}r}8`σr
?
1´γq

2

∆2p1´γq3`β by assumption,

and consequently, the two terms can be made
arbitrarily small by increasing pp, qq appropriately.
The equation (38) displays the bound for the pair
pp, qq “ p2, 1q.

The only remaining detail is to prove Lemma 5.

B. Proof of Lemma 5

Recall that the update within an epoch takes the form
(cf. SingleEpoch)

Qk`1 “p1 ´ αkqQk

` αk

!

pTkpQq ´ pTkpQmq ` TNm
pQmq

)

,

where Qm represents the input into epoch m. We define
the shifted operators and noisy shifted operators for
epoch m by

JpQq “ TpQq ´ TpQmq ` TNm
pQmq

and pJkpQq “ pTkpQq ´ pTkpQmq ` TNm
pQmq.

(39)

Since both of the operators T and pTk are γ-contractive
in the ℓ8-norm, the operators J and pJk are also γ-
contractive operators in the same norm. Let pQm denote
the unique fixed point of the operator J. The roadmap
of the proof is to show that at the end of epoch m,
the estimate QK`1 is close to the fixed point pQm for
sufficiently large value of the epoch length K and that
the fixed point pQm is closer to Q‹ than the epoch
initialization Qm for sufficiently large Nm.

The proof of Lemma 5 relies on two auxiliary lemmas
that formalize this intuition. Lemma 6 characterizes the
progress of Algorithm VR-QL within an epoch, and
Lemma 7 addresses the progress of Algorithm VR-QL
over the epochs.

Lemma 6. Given an epoch length K lower bounded as
K ě c2

logpND{δq

p1´γq3
, we have

}QK`1 ´ pQm}8 ď
1

33
}Qm ´ Q‹}8

`
1

33
} pQm ´ Q‹}8,

with probability exceeding 1 ´ δ
2M .

Lemma 6 is borrowed from Khamaru et al. [KPR`21];
see the proof of Lemma 2 in that paper for details.

Our next lemma bounds the difference between the
epoch fixed point pQm and the optimal value function
Q‹.
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Lemma 7. Assume that Nm satisfies the bound
Nm ě c log4p8DM{δq

p1`}r}8`σr
?
1´γq

2

∆2p1´γq3
. Then we have

} pQm ´ Q‹}8 ď
}Qm ´ Q‹}8

33

` c4

"

τ˚

?
Nm

`
κ

Nm

*

,

with probability exceeding 1 ´ δ
2M .

See Appendix C-A for a proof of this lemma.

With these two auxiliary results in hand, completing
the proof of Lemma 5 is relatively straightforward. By
the triangle inequality, we have

}Qm`1 ´ Q‹}8

“ }QK`1 ´ Q‹}8

ď }QK`1 ´ pQm}8 ` } pQm ´ Q‹}8

piq
ď

"

1

32
}Qm ´ Q‹}8 `

1

32
} pQm ´ Q‹}8

*

` } pQm ´ Q‹}8

“
1

32
}Qm ´ Q‹}8 `

33

32
} pQm ´ Q‹}8

piiq
ď

1

32
}Qm ´ Q‹}8 `

1

32

␣

}Qm ´ Q‹}8

(

` c

ˆ

τ˚

?
Nm

`
κ

Nm

˙

. ď
1

16
}Qm ´ Q‹}8 ` c

ˆ

τ˚

?
Nm

`
κ

Nm

˙

.

(40)

Here inequality (i) follows from Lemma 6, whereas
inequality (ii) follows from Lemma 7. Finally, the two
bounds hold jointly with probability at least 1 ´ δ

M via
a union bound.

V. DISCUSSION

The main contribution of this paper was to analyze
the fundamental limits of estimating optimal Q-functions
using the lens of instance dependence. Our analysis
provides upper and lower bounds on the sample size
required to estimate the optimal Q-function of a given
instance up to a given accuracy; both these bounds
involve a functional of the instance that incorporates both
the noise in the observation model, and the compounded
effects of the noise via the Markovian dynamics. The
upper bounds are achieved by an efficient algorithm
based on applying a variance reduction scheme to the
classical Q-learning algorithm (which is itself a sub-
optimal procedure). While our analysis is sharp in terms
of its instance dependence, there remain some minor

gaps between our upper and lower bounds. In particular,
our current techniques lead to a logarithmic gap in
the state-action spaces, and our upper bounds depend
on sample size conditions that are stronger than those
required for the upper bounds.

More broadly, the current analysis was performed in
a relatively benign setting, in which the state and action
spaces are both finite, there is no function approximation,
and the sampling model is i.i.d. (as an instance of the
so-called generative model). In related work [MPW23],
a subset of the current authors analyzed the instance-
dependence of policy evaluation problems in a setting
that does involve function approximation and Markovian
noise. The evaluation problem is linear in nature, as
opposed to the non-linear policy optimization problem
studied here. However, it is an interesting direction for
future work to develop such extensions for non-linear
problems, such as the optimal Q-estimation problem an-
alyzed in this paper, as well as policy gradient methods.

APPENDIX A
CALCULATIONS FOR EXAMPLE 1

Here we derive the bound (13). Letting V ‹ denote the
value function of the optimal policy π‹, we have

pZπ‹

´ Pπ‹

qQ “

»

–

| |

pZa1 ´ Pa1qV ‹ 0
| |

fi

fl . (41)

Letting W “ pI´γPa1q´1pZa1 ´Pa1qQπ‹ and solving
for pI ´ γPπ‹

qY “ γpZπ‹

´ Pπ‹

qQ gives

Y “ γ ¨

»

–

| |

W γW
| |

fi

fl . (42)

Thus, we have

}νpπ‹;Pλ, rλq}8 :“ max
ps,aq

|νpπ‹;Pλ, rλqps, aq|

“ max
ps,aq

|
a

VarpYqps, aq|

ď c ¨
1

p1 ´ γq1.5´λ
.

The second equality above follows from the defini-
tion (5) of the matrix νpπ‹;Pλ, rλq, and the last step
via some simple calculations.

APPENDIX B
AUXILIARY LEMMAS FOR THEOREM 1

In this section, we prove the auxiliary lemmas that are
the used in the proof of Theorem 1.
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A. Proof of Lemma 1

This proof uses standard arguments, in particular
following the usual avenue of reducing estimation to
testing [Bir83, Wai19a]. For completeness, we provide
the details here. We use Q and Q1 to denote the optimal
Q-functions for problem P and P 1 respectively. We
first lower bound the minimax risk over P,P 1 by the
averaged risk as follows:

inf
Q̂N

max
IPtP,P 1u

EP r}Q ´ QpIq}8s

ě
1

2

´

EPN }Q̂N ´ Q}8 ` EpP 1qN }Q̂N ´ Q1}8

¯

.

Here PN is a product measure that yields N i.i.d.
samples from P . Then, for any δ ě 0, we have by
Markov’s inequality

EPN

”

}Q̂N ´ Q}8

ı

` EpP 1qN

”

}Q̂N ´ Q1}8

ı

ě δ
”

PN
´

}Q̂N ´ Q}8 ě δ
¯

`pP 1qN
´

}Q̂N ´ Q1}8 ě δ
¯ı

.

Define δ01 :“ 1
2}Q ´ Q1}8, we have

}Q̂N ´ Q}8 ă δ01 ùñ }Q̂N ´ Q1}8 ą δ01,

yielding

EPN

”

}Q̂N ´ Q}8

ı

` EpP 1qN

”

}Q̂N ´ Q}8

ı

ě δ01

”

1 ´ PN
´

}Q̂N ´ Q}8 ă δ01

¯

`pP 1qN
´

}Q̂N ´ Q1}8 ě δ01

¯ı

ě δ01

”

1 ´ PN
´

}Q̂N ´ Q1}8 ě δ01

¯

`pP 1qN
´

}Q̂N ´ Q1}8 ě δ01

¯ı

ě δ01
“

1 ´ }PN ´ pP 1qN }TV
‰

ě δ01

”

1 ´
?
2dHel

`

PN , pP 1qN
˘2
ı

,

where dHel pP,Qq denotes the Hellinger distance between
distributions P and Q. Via the tensorization property of
the Hellinger distance for independent random variables,
we have

d2Hel

`

PN , pP 1qN
˘

“ 1 ´
`

1 ´ d2Hel

`

P,P 1
˘˘N

ď Nd2Hel

`

P,P 1
˘

.

Putting together the pieces, we have that

inf
Q̂N

max
IPtP,P 1u

EI r}Q ´ QpIq}8s

ě
}QpPq ´ QpP 1q}8

4

´

1 ´
?
2Nd2Hel

`

P,P 1
˘

¯

`
.

The desired result then follows from taking a supremum
over all positive alternative P 1 P S and a simple
calculation.

B. Proof of Lemma 3
We devote a subsection to each of the three parts of

this lemma.
1) Proof of Lemma 3(a): In order to establish that P̄

is a transition kernel, we observe that
ÿ

s1

Ps1,zpQps1, π1ps1qq ´ pPπ1Qqpzqq “ 0

by noting that pPπ1Qqpzq “
ř

s1 Ps1,zQps1, π1ps1qq.
Thus we conclude

ř

s1 P̄s1,z “ 1, establishing that
the rows of P̄ sum up to 1. To check non-negativity
of entries of P̄ note we have |Uz,z1 | ď 1

1´γ ,
and 2}Q}span ě |Qps1, π1ps1qq ´ pPπ1Qqpzq|. Combin-
ing the last two observation along with the sample size
requirement (11b) implies

P̄s1,z ě 1 ´
1

ρ̃pz̄q
?
2N

¨
}θ}span

1 ´ γ
ě 0,

establishing that P̄ defines a valid set of transition
kernels.

2) Proof of Lemma 3(b): The proof of part (b) follows
by first providing a general upper bound on the Hellinger
distance dHel pP,P1q, and then substituting the values of
instances P and P1. Concretely, we prove

d2HelpP,P1q
(a)
ď

1

2
¨
ÿ

z,s1

pPs1,z ´ P̄s1,zq2

Ps1,z

(b)
ď

1

4N
.

(43)

With this result in hand, the claimed bound on |||P̄π1 ´

Pπ1 |||8Ñ8 is immediate. Indeed,

|||P̄π1 ´ Pπ1 |||28Ñ8 ď
ÿ

z,s1

pPs1,z ´ P̄s1,zq2

ď
ÿ

z,s1

pPs1,z ´ P̄s1,zq2

Ps1,z
ď

1

2N
.

It remains to prove the bounds (43a) and (43b).
a) Proof of equation (43)a: We use pZ, Rq (re-

spectively pZ1, R1q) to denote a sample drawn from the
distribution P (respectively P 1), and PZ, PR (respec-
tively P 1

Z, P
1
R) to denote the marginal distribution of Z, R

(respectively Z1, R1). By independence of Z and R (and
likewise for Z1, R1) we have

P “ PZ b PR, and P 1 “ P 1
Z b P 1

R. (44)

Let P 1 “ pP1, r1q P S1 (so r1 “ r). Via the independence
between Z and R, we have

d2HelpP, P
1q “ d2HelpPZ, P

1
Zq. (45)
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For state-action pairs ps, aq, Zps, aq are independent (and
likewise for Z1) so

d2HelpPZ, P
1
Zq “ 1 ´

ź

s,a

`

1 ´ dHelpPZps,aq, PZ1ps,aqq
˘2

ď
ÿ

s,a

d2HelpPZps,aq, PZ1ps,aqq.

Note that Zps, aq and Z1
ps, aq have multinomial distribu-

tion with parameters Pap¨ | sq and P1
ap¨ | sq respectively.

Therefore,

d2HelpPZps,aq, PZ1ps,aqq ď
1

2
Dχ2

`

PZ1ps,aq}PZps,aq

˘

“
1

2

ÿ

s1

pPs1,z ´ P̄s1,zq2

Ps1,z
.

b) Proof of equation (43)b: We have

p2Nρ̃2pz̄qq ¨
ÿ

z,s1

pPs1,z ´ P̄s1,zq2

Ps1,z

“
ÿ

z

ÿ

s1

Ps1,zpUz̄,zq2pQps1, π1ps1qq ´ pPπ1Qqpzqq2

“
ÿ

z

U2
z̄,z

˜

ÿ

s1

Ps1,zpQps1, π1ps1qq ´ pPπ1Qqpzqq2

¸

piq
“

ÿ

z

pUz̄,zq2φ2pzq
piiq
“ ρ̃2pz̄q

Equality (i) follows from the definition

φ2pzq “ Var pZπ1Qpzqq

“
ÿ

s1

Ps1,zpQps1, π1ps1qq ´ pPπ1Qqpzqq2, (46)

whereas equality (ii) follows from the definition (25),
which ensures that

ρ̃2pz̄q “ Var
`

pI ´ γPπ1q´1Zπ1Qpz̄q
˘

“
ÿ

z1

pUz,z1 q2φ2pz1q.

3) Proof of Lemma 3(c): The entries of the matrix
U :“ pI ´ γPπ1q´1 are positive, so that it suffices to
show that the vector pP̄π ´PπqQ is entry-wise positive.
We have

pP̄π1 ´ Pπ1qQpzq

“
ÿ

s1

pP̄s1,z ´ Ps1,zqQps1, π1ps1qq

“
ÿ

s1

pP̄s1,z ´ Ps1,zqpQps1, π1ps1qq ´ pPπ1Qqpzqq

“
Uz̄,z

ρ̃pz̄q
?
2N

ÿ

s1

Ps1,zpQps1, π1ps1qq ´ pPπ1Qqpzqq2

“
1

ρ̃pz̄q
?
2N

Uz̄,zφ
2pzq ě 0,

where the second equality follows from the fact that
ř

s1 P̄s1,z “
ř

s1 Ps1,z “ 1, the third equality follows by
substituting the value of P̄ from equation (27), and the
equality in the last line follows from the definition (46).
This completes the proof of part (c).

APPENDIX C
AUXILIARY LEMMAS FOR THEOREM 2

In this section, we prove the auxiliary lemmas that are
used in the proof of Theorem 2.

A. Proof of Lemma 7

This section is devoted to the proof of Lemma 7 which
underlies the proof of Theorem 2. In order to simplify
notation, we drop the epoch number m from pQm and
Qm throughout the remainder of the proof. Let pπ and
π‹ denote the greedy policies with respect to the Q
functions pQ and Q‹, respectively. Concretely,

π‹psq “ argmax
aPA

Q‹ps, aq

and pπpsq “ argmax
aPA

pQps, aq.
(47)

Ties in the argmax are broken by choosing the action a
with smallest index.

By the optimality of the policies pπ and π‹ for the
Q-functions pQ and Q‹, respectively, we have

Q‹ “ r`γPπ‹

Q‹ and pQ “ rr ` γPpπ
pQ,

where rr :“ r ` TNm
pQq ´ TpQq.

(48)

In order to complete the proof, we require the following
auxiliary result.

Lemma 8. We have, for any optimal policy

}pI ´ γPπ‹

q´1prr ´ rq}8

ď
}Q ´ Q‹}8

33
`

4 log4p8DM{δq

Nm
¨

}Q‹}span

p1 ´ γq

` 4

d

log4p8DM{δq

Nm
max
πPΠ‹

}νpπ;P, rq}8,

with probability exceeding 1 ´ δ
8M .

See Appendix C-B for the proof.
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By a union bound over the set of optimal policy Π‹, we
have that

max
πPΠ‹

}pI ´ γPπ‹

q´1prr ´ rq}8

ď
}Q ´ Q‹}8

33
`

4 log4p8DM |Π‹|{δq

Nm
¨

}Q‹}span

p1 ´ γq

` 4

d

log4p8DM |Π‹|{δq

Nm
¨ max
πPΠ‹

}νpπ;P, rq}8

with probability exceeding 1 ´ δ
8M . It remains to prove

that under the assumptions of Lemma 5, the following
bound holds with probability 1 ´ δ

M :

} pQ ´ Q‹}8 ď max
π‹PΠ‹

}pI ´ γPπ‹

q´1prr ´ rq}8. (49)

If pπ is an optimal policy, then the above claim is
immediate. We have Q‹ “ r ` γPpπQ‹ by the Bellman
optimality condition, and so we have

} pQ ´ Q‹}8 “ }pI ´ γPpπq´1prr ´ rq}8.

The following lemma establishes that pπ is an optimal
policy.

Lemma 9. Given two Q-functions Q‹ and pQ and the
associated optimal policies π‹ and pπ, we have

PpπQ‹ps, aq ě Pπ‹

Q‹ps, aq ´ 2} pQ ´ Q‹}8

for all ps, aq P S ˆ A. Moreover, if the batch size
satisfies the lower bound Nm ě c3

p1`}r}8`σr
?
1´γq

2

p1´γq3
¨

logpDM2
{δq

∆2 , then pπ is an optimal policy with probability
at least 1 ´ δ

M .

We prove this lemma in Appendix C-C.

B. Proof of Lemma 8

Recall the definition rr :“ pR ` γppZ
π

´ PπqQ, where
π a policy greedy with respect to Q; that is, πpxq “

argmaxuPA Qps, aq, where we break ties in the argmax
by choosing the action a with smallest index. We have,
using the shorthand U “ pI ´ γPπ‹

q´1,

}pI ´ γPπ‹

q´1prr ´ rq}8

ď }U
␣

ppZ
π
Q ´ pZ

π‹

Q‹q ´ pPπQ ´ Pπ‹

Q‹q
(

}8

` }U
␣

p pR ´ rq ` γppZ
π‹

´ Pπ‹

qQ‹
(

}8.

Observe that the random variable pR and pZ are av-
erages of Nm i.i.d. random variables tRiu and tpZiu,
respectively. Additionally, entrywise, the random reward
is a Gaussian random variable with variance σ2

r , and by
the generative model assumption, the randomness in the

random rewards tRiu is independent of the randomness
in tpZiu. Consequently, applying Hoeffding’s bound on
the term involving tRiu, a Bernstein bound on the term
involving tpZiu and a union bound yields the following
result which holds with probability at least 1 ´ δ

4M :

}pI ´ γPπ‹

q´1

"

p pR ´ rq ` γppZ
π‹

´ Pπ‹

qQ‹

*

}8

ď
4

?
Nm

}νpπ‹;P, rq}8

a

log4p8DM{δq

`
4}Q‹}span

p1 ´ γqNm
¨ log4p8DM{δq

ď
4

?
Nm

max
πPΠ‹

}νpπ;P, rq}8

a

log4p8DM{δq

`
4}Q‹}span

p1 ´ γqNm
¨ log4p8DM{δq.

Finally, for each state-action pair ps, aq the random

variable ppZ
π
Q´ pZ

π‹

Q‹qps, aq has expectation pPπQ´

Pπ‹

qps, aq with entries uniformly bounded by 2}Q ´

Q‹}8. Consequently, by a standard application of Ho-
effding’s inequality combined with the lower bound
Nm ě c3

4m

p1´γq2
log4p8DM{δq, we have

γ

1 ´ γ
¨ }ppZ

π
Q ´ pZ

π‹

Q‹q ´ pPπQ ´ Pπ‹

Q‹q}8

ď
}Q ´ Q‹}8

33
,

with probability exceeding 1 ´ δ
4M . The statement then

follows from combining these two high-probability state-
ments with a union bound.

C. Proof of Lemma 9

We require the following auxiliary result:

Lemma 10. Given a batch size Nm lower bounded as
Nm ě c3

log4p8DM{δq

p1´γq2
, we have

} pQm ´ Q‹}8 ď c1¨
1 ` }r}8 ` σr

?
1 ´ γ

?
Nmp1 ´ γq1.5

¨ log4p8DM2{δq

with probability at least 1 ´ δ
4M .

The proof of this lemma exploits the optimality of the
policies π‹ and pπ with respect to the Q-functions Q‹
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and pQ, respectively. Accordingly, we have for all state
action pair ps, aq P S ˆ A

PpπQ‹ps, aq “ Ppπ
pQps, aq ` PpπQ‹ps, aq ´ Ppπ

pQps, aq

ě Pπ‹
pQps, aq ´ }Q‹ ´ pQ}8

“ Pπ‹

Q‹ps, aq ` Pπ‹
pQps, aq

´ Pπ‹

Q‹ps, aq ´ }Q‹ ´ pQ}8

ě Pπ‹

Q‹ps, aq ´ 2}Q‹ ´ pQ}8. (50)

The first inequality follows from the optimality of the
policy pπ with respect to the Q-function pQ. This com-
pletes the proof of the first part of the lemma.

Turning to the second part, invoking Lemma 10 with
a batch size Nm ě

p1`}r}8`σr
?
1´γq

2

p1´γq3
¨
logpDM2

{δq

∆2 guar-
antees that

2}Q‹ ´ pQ}8 ă ∆.

This inequality, combined with the bound (50) and the
definition of the optimality gap ∆, implies that pπ is an
optimal policy.

Proof of Lemma 10: This proof exploits the result
of Lemma 4, that with probability at least 1 ´ δ

M2 , we
have

} pQm ´ Q‹}8

ď
}Qm ´ Q‹}8

33
`

logp8DM2{δq

Nm
¨

}Q‹}span

1 ´ γ

`
1 ` }r}8 ` σr

?
1 ´ γ

p1 ´ γq1.5

d

logp8DM2{δq

Nm
.

(51)

For convenience, we use the shorthand

b “ 1 ` }r}8 ` σr

a

1 ´ γ.

Following an argument similar to the proof of Theo-
rem 2, we have

}Qm`1 ´ Q‹}8

ď
}Qm ´ Q‹}8

16
` c

#

b

p1 ´ γq1.5

d

logp8DM2{δq

Nm

`
logp8DM2{δq

Nm
¨

}Q‹}span

1 ´ γ

*

piq
ď

}Q1 ´ Q‹}8

16m
` 2c

#

b

p1 ´ γq1.5

d

logp8DM2{δq

Nm

`
logp8DM2{δq

Nm
¨

}Q‹}span

1 ´ γ

*

piiq
ď

}r}8
?
1 ´ γ

¨
1

p1 ´ γq
?
Nm

¨
1

4m

` 2c

#

b

p1 ´ γq1.5

d

logp8DM2{δq

Nm

`
logp8DM2{δq

Nm
¨

}Q‹}span

1 ´ γ

*

,

(52)

with probability at least 1´ δ
4M . Inequality (ii) follows by

recursing the first inequality; the last inequality uses the
initialization condition }Q1´Q‹}8 ď

}r}8?
1´γ

, and Nm ě

4m

p1´γq2
. Combining the bounds (51) and (52) and using

the bounds }Q‹}8 ď
}r}8

1´γ and }Q‹}span ď 2}Q‹}8, we
find that

} pQm ´ Q‹}8 ď 8c ¨
b

?
Nmp1 ´ γq1.5

¨ logp8DM2{δq,

with probability at least 1 ´ δ
4M . This completes the

proof.
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