Martin J. Wainwright: Publications

 

• Sorted by year • Books • Journals • Conferences • Research Reports • Theses • Miscellaneous • 

Books

  1. M. J. Wainwright, "High-dimensional statistics: A non-asymptotic viewpoint",Cambridge University Press , 2019. [bibtex
  2. T. Hastie, R. Tibshirani, M. J. Wainwright, "Statistical learning with sparsity: The Lasso and generalizations",CRC Press, Chapman and Hall , 2015. [bibtex

Journal Articles

  1. Y. Duan, M. Wang, M. J. Wainwright, "Optimal value estimation using kernel-based temporal difference methods", Annals of Statistics, vol. 52, no. 5, pp. 1927–1952, 2024. [pdf]  [bibtex
  2. W. Mou, A. Pananjady, M. J. Wainwright, P. L. Bartlett, "Optimal and instance-dependent guarantees for Markovian linear stochastic approximation", Mathematical Statistics and Learning, vol. 7, no. 1, pp. 41–153, 2024. [pdf]  [bibtex
  3. N. Ho, K. Khamaru, R. Dwivedi, M. J. Wainwright, M. I. Jordan, B. Yu, "Instability, Computational Efficiency and Statistical Accuracy", Journal of Machine Learning Research, pp. To appear, July, 2024. [pdf]  [bibtex]  (Originally posted as arxiv:2005.11411
  4. R. Pathak, M. J. Wainwright, L. Xiao, "Noisy recovery from random linear observations: Sharp minimax rates under elliptical constraints", Annals of Statistics, vol. 52, no. 6, pp. 2816–2850, December, 2024. [pdf]  [bibtex
  5. W. Mou, N. Ho, M. J. Wainwright, P. Bartlett, M. I. Jordan, "A diffusion process perspective on posterior contraction rates for parameters", SIAM Journal on Math. Data Sci., vol. 6, no. 2, pp. 553–577, 2024. [pdf]  [bibtex
  6. L. Lin, K. Khamaru, M. J. Wainwright, "Semi-parametric inference based on adaptively collected data", Annals of Statistics, pp. To appear, 2024. [bibtex]  (Posted as arXiv:2303.02534
  7. K. Khamaru, Y. Deshpande, L. Mackey, M. J. Wainwright, "Near-optimal inference in adaptive linear regression", Annals of Statistics, pp. To appear, 2024. [bibtex
  8. E. Xia, K. Khamaru, M. J. Wainwright and M. I. Jordan, "Instance-optimality in optimal value estimation: Adaptivity via variance-reduced Q-learning", IEEE Trans. Info. Theory, vol. 1, pp. To appear, December, 2024. [pdf]  [bibtex
  9. C. Ma, R. Pathak, M. J. Wainwright, "Optimally tackling covariate shift in RKHS-based nonparametric regression", Annals of Statistics, vol. 51, no. 2, 2023. [pdf]  [bibtex
  10. E. Xia, K. Khamaru, M. J. Wainwright, M. I. Jordan, "Instance-dependent confidence and early stopping in reinforcement learning", Journal of Machine Learning Research, pp. 1–43, 2023. [pdf]  [bibtex
  11. W. Mou, A. Pananjady, M. J. Wainwright, "Optimal oracle inequalities for solving projected fixed-point equations", Mathematics of Operations Research, vol. 48, no. 4, pp. 2308–2336, November, 2023. [pdf]  [bibtex
  12. R. Dwivedi, C. Singh, B. Yu, M. J. Wainwright, "Revisiting minimum description length complexity in overparameterized models", Journal of Machine Learning Research, vol. 24, pp. 1–59, 2023. [pdf]  [bibtex
  13. W. Mou, N. Flammarion, M. J. Wainwright, P. L. Bartlett, "An efficient sampling algorithm for non-smooth composite potentials", Journal of Machine Learning Research, vol. 23, pp. 1–50, 2022. [pdf]  [bibtex
  14. C. Ma, B. Zhu, J. Jiao, M. J. Wainwright, "Minimax Off-Policy Evaluation for Multi-Armed Bandits", IEEE Trans. Information Theory, vol. 68, pp. 5314–5339, March, 2022. [bibtex
  15. A. Pananjady, M. J. Wainwright, "Instance-dependent $\ell_\infty$-bounds for policy evaluation in tabular reinforcement learning", IEEE Trans. Info. Theory, vol. 67, no. 1, pp. 566–585, January, 2021. [bibtex
  16. W. Mou, N. Flammarion, M. J. Wainwright, P. L. Bartlett, "Improved bounds for discretization of Langevin diffusions: Near optimal rates without convexity", Bernoulli, 2021. [bibtex
  17. W. Mou, Y. Ma, M. J. Wainwright, P. L. Bartlett, M. I. Jordan, "High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm", Journal of Machine Learning Research, vol. 22, pp. 1–41, January, 2021. [bibtex
  18. K. Khamaru, A. Pananjady, F. Ruan, M. J. Wainwright, M. I. Jordan, "Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis", SIAM J. Math. Data Science, vol. 3, no. 4, pp. 1013–1040, October, 2021. [bibtex
  19. N. B. Shah, S. Balakrishnan, M. J. Wainwright, "A Permutation-based Model for Crowd Labeling: Optimal Estimation and Robustness", IEEE Trans. Info. Theory, vol. 67, pp. 4162–4184, 2021. [bibtex
  20. C. Mao, A. Pananjady, M. J. Wainwright, "Towards Optimal Estimation of Bivariate Isotonic Marices with Unknown Permutations", Annals of Statistics, vol. 48, no. 6, pp. 3183–3205, 2020. [bibtex
  21. Y. Wei, B. Fang, M. J. Wainwright, "From Gauss to Kolmogorov: Localized measures of complexity for ellipses", Electronic Journal of Statistics, vol. 14, no. 2, pp. 2988–3031, 2020. [bibtex
  22. Y. Chen, R. Dwivedi, M. J. Wainwright, B\ . Yu, "Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients", Journal of Machine Learning Research, vol. 21, no. 92, pp. 1–71, 2020. [bibtex
  23. M. Rabinovich, A. Ramdas, M. I. Jordan, M. J. Wainwright, "Function-Specific Mixing Times and Concentration Away from Equilibrium", Bayesian Analysis, vol. 2, pp. 505–532, 2020. [bibtex
  24. D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. L. Bartlett, M. J. Wainwright, "Derivative-free methods for policy optimization: Guarantees for linear-quadratic systems", Journal of Machine Learning Research, vol. 51, pp. 1––51, 2020. [bibtex
  25. A. Pananjady, C. Mao, V. Muthukumar, M. J. Wainwright, T. A. Courtade, "Worst-case vs Average-case Design for Estimation from Fixed Pairwise Comparisons", Annals of Statistics, vol. 48, no. 2, pp. 1072–1097, 2020. [bibtex
  26. Y. Chen, R. Dwivedi, M. J. Wainwright, B. Yu, "Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients", Journal of Machine Learning Research, vol. 21, no. 92, pp. 1–72, May, 2020. [bibtex
  27. M. Rabinovich, A. Ramdas, M. J. Wainwright, M. I. Jordan, "Optimal Rates and Tradeoffs in Multiple Testing", Statistica Sinica, vol. 30, pp. 741–762, 2020. [bibtex
  28. Y. Wei, M. J. Wainwright, "The local geometry of testing in ellipses: Tight control via localized Kolmogorov widths", IEEE Trans. Info. Theory, vol. 66, no. 8, pp. 5110–5129, August, 2020. [bibtex
  29. R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, B. Yu, "Singularity, Misspecification, and the Convergence Rate of EM", Annals of Statistics, vol. 48, no. 6, pp. 3161––3182, 2020. [bibtex
  30. Y. Wei, F. Yang, M. J. Wainwright, "Early stopping for kernel boosting algorithms: A general analysis with localized complexities", IEEE Trans. Info. Theory, vol. 65, no. 10, pp. 6685–6703, October, 2019. [bibtex
  31. N. B. Shah, S. Balakrishnan, M. J. Wainwright, "Low permutation-rank matrices: Structural properties and noisy completion", Journal of Machine Learning Research, vol. 20, pp. 1–43, June, 2019. [bibtex
  32. R. Heckel, N. B. Shah, K. Ramchandran, M. J. Wainwright, "Active Ranking from Pairwise Comparisons and When Parametric Assumptions Don’t Help", Annals of Statistics, vol. 47, no. 6, pp. 3099–3126, 2019. [bibtex
  33. Y. Wei, M. J. Wainwright, A. Guntuboyina, "The geometry of testing over convex cones: Generalized likelihood ratio tests and minimax radii", Annals of Statistics, vol. 47, no. 2, pp. 994–1024, 2019. [bibtex
  34. A. Ramdas, R. F. Barber, M. J. Wainwright, M. I. Jordan, "A Unified Treatment of Multiple Testing with Prior Knowledge using the $p$-filter", Annals of Statistics, vol. 47, no. 5, pp. 2790–2821, 2019. [bibtex
  35. K. Khamaru, M. J. Wainwright, "Convergence guarantees for a class of non-convex and non-smooth optimization problems", Journal of Machine Learning Research, vol. 20, pp. 1–52, 2019. [bibtex
  36. R. Dwivedi, Y. Chen, M. J. Wainwright, B. Yu, "Log-concave sampling: Metropolis-Hastings algorithms are fast.", Journal of Machine Learning Research, vol. 20, no. 183, pp. 1–42, 2019. [bibtex
  37. A. Ramdas, J. Chen, M. J. Wainwright, M. I. Jordan, "DAGGER: A sequential algorithm for FDR control on DAGs", Biometrika, vol. 106, no. 1, pp. 69–86, March, 2019. [bibtex
  38. N. B. Shah, S. Balakrishnan, M. J. Wainwright, "Feeling the Bern: Adaptive Estimators for Bernoulli Probabilities of Pairwise Comparisons", IEEE Trans. Info. Theory, vol. 65, no. 8, pp. 4854–4874, August, 2019. [bibtex
  39. F. Yang, S. Balakrishnan, M. J. Wainwright, "Statistical and Computational Guarantees for the Baum-Welch Algorithm", Journal of Machine Learning Research, vol. 18, pp. 1–53, 2018. [bibtex
  40. Y. Chen, R. Dwivedi, M. J. Wainwright, B. Yu, "Fast MCMC Sampling Algorithms on Polytopes", Journal of Machine Learning Research, vol. 19, pp. 1–86, 2018. [bibtex
  41. A. Pananjady, M. J. Wainwright, T. A. Courtade, "Linear regression with shuffled data: Statistical and computational limits of permutation recovery", IEEE Transactions on Information Theory, vol. 64, no. 5, pp. 3286–3300, 2018. [bibtex
  42. H. Mania, A. Ramdas, M. J. Wainwright, M. I. Jordan and B. Recht, "On kernel methods for covariates that are rankings", Electronic Journal of Statistics, vol. 12, pp. 2537–2577, 2018. [bibtex
  43. N. B. Shah, M. J. Wainwright, "Simple, Robust and Optimal Ranking from Pairwise Comparisons", Journal of Machine Learning Research, vol. 18, pp. 1––18, 2018. [bibtex
  44. J. C. Duchi, M. I. Jordan, M. J. Wainwright, "Minimax optimal procedures for locally private estimation", Journal of the American Statistical Association, vol. 133, no. 521, pp. 182–215, June, 2018. [bibtex
  45. S. Van de Geer, M. J. Wainwright, "Concentration for (regularized) empirical risk minimization", Sankhya A, vol. 79, pp. 159–200, August, 2017. [bibtex
  46. M. Pilanci, M. J. Wainwright, "Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence", SIAM Jour. Opt., vol. 27, no. 1, pp. 205–245, March, 2017. [bibtex
  47. Y. Yang, M. Pilanci, M. J. Wainwright, "Randomized sketches for kernels: Fast and optimal non-parametric regression", Annals of Statistics, vol. 45, no. 3, pp. 991–1023, 2017. [bibtex
  48. S. Balakrishnan, M. J. Wainwright, B. Yu, "Statistical guarantees for the EM algorithm: From population to sample-based analysis", Annals of Statistics, vol. 45, no. 1, pp. 77––120, 2017. [bibtex
  49. P. Loh, M. J. Wainwright, "Support recovery without incoherence: A case for nonconvex regularization", Annals of Statistics, vol. 45, no. 6, pp. 2455–2482, 2017. [bibtex
  50. Y. Zhang, M. J. Wainwright, M. I. Jordan, "Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators", Elec. Jour. Statistics, vol. 11, pp. 752–799, 2017. [bibtex
  51. N. B. Shah, S. Balakrishnan, A. Guntuboyina, M. J. Wainwright, "Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues", IEEE Trans. Info. Theory, vol. 63, no. 2, pp. 934–959, February, 2017. [bibtex
  52. M. Pilanci, M. J. Wainwright, "Iterative Hessian Sketch: Fast and accurate solution approximation for constrained least-squares", Journal of Machine Learning Research, vol. 17, no. 53, pp. 1–38, April, 2016. [bibtex
  53. Y. Yang, M. J. Wainwright, M. I. Jordan, "On the computational complexity of high-dimensional Bayesian variable selection", Annals of Statistics, vol. 44, no. 6, pp. 2497–2532, 2016. [bibtex
  54. M. Chichignoud, J. Lederer, M. J. Wainwright, "A practical scheme and fast algorithm to tune the Lasso with optimality guarantees", Journal of Machine Learning Research, vol. 17, pp. 1–17, 2016. [bibtex
  55. N. B. Shah, S. Balakrishnan, J. Bradley, A. Parekh and K. Ramchandran, M. J. Wainwright, "Estimation from pairwise comparisons: Sharp minimax bounds with topology dependence", Journal of Machine Learning Research, vol. 17, no. 58, pp. 1–46, February, 2016. [bibtex
  56. M. Pilanci, M. J. Wainwright, "Randomized sketches of convex programs with sharp guarantees", IEEE Trans. Info. Theory, vol. 9, no. 61, pp. 5096–5115, September, 2015. [bibtex
  57. M. Pilanci, M. J. Wainwright, L. El Ghaoui, "Sparse learning via Boolean relaxations", Mathematical Programming, vol. 151, no. 1, pp. 63–87, June, 2015. [bibtex
  58. M. Pilanci, M. J. Wainwright, "Randomized sketches of convex programs with sharp guarantees", IEEE Trans. Info. Theory, vol. 9, no. 61, pp. 5096–5115, September, 2015. [bibtex
  59. G. Schiebinger, M. J. Wainwright, B. Yu, "The geometry of kernelized spectral clustering", Annals of Statistics, vol. 43, no. 2, pp. 819–846, 2015. [bibtex
  60. P. Loh, M. J. Wainwright, "Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima", Journal of Machine Learning Research, vol. 16, pp. 559–616, April, 2015. [bibtex
  61. Y. Zhang, J. C. Duchi, M. J. Wainwright, "Divide and Conquer Kernel Ridge Regression: A distributed algorithm with minimax optimal rates", Journal of Machine Learning Research, vol. 16, pp. 3299–3340, December, 2015. [bibtex
  62. J. C. Duchi, M. I. Jordan, M. J. Wainwright and A. Wibisono, "Optimal rates for zero-order optimization: the power of two function evaluations", IEEE Trans. Info. Theory, vol. 61, no. 5, pp. 2788–2806, 2015. [bibtex
  63. G. Raskutti, M. J. Wainwright, B. Yu, "Early stopping and non-parametric regression: An optimal data-dependent stopping rule", Journal of Machine Learning Research, vol. 15, pp. 335–366, 2014. [bibtex
  64. J. C. Duchi, M. J. Wainwright, M. I. Jordan, "Privacy-aware learning", Journal of the ACM, vol. 61, no. 6, pp. Article 37, November, 2014. [bibtex
  65. N. Noorshams, M. J. Wainwright, "Belief Propagation for Continuous State Spaces: Stochastic Message-Passing with Quantitative Guarantees", Journal of Machine Learning Research, vol. 14, pp. 2799–2835, 2013. [www]  [bibtex
  66. N. Noorshams, M. J. Wainwright, "Stochastic belief propagation: A low-complexity alternative to the sum-product algorithm", IEEE Trans. Info. Theory, vol. 59, no. 4, pp. 1981–2000, April, 2013. [bibtex
  67. P. Loh, M. J. Wainwright, "Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses", Annals of Statistics, vol. 41, no. 6, pp. 3022–3049, December, 2013. [bibtex
  68. Y. Zhang, J. C. Duchi, M. J. Wainwright, "Communication-efficient algorithms for statistical optimization", Journal of Machine Learning Research, vol. 14, pp. 3321–3363, November, 2013. [bibtex
  69. M. J. Wainwright, "Discussion: Latent graphical model selection by convex optimization", Annals of Statistics, vol. 40, no. 4, pp. 1978–1983, 2012. [bibtex
  70. S. Negahban, M. J. Wainwright, "Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise", Journal of Machine Learning Research, vol. 13, pp. 1665–1697, May, 2012. [bibtex
  71. A. Agarwal, S. Negahban, M. J. Wainwright, "Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions", Annals of Statistics, vol. 40, no. 2, pp. 1171–1197, 2012. [bibtex
  72. A. Agarwal, S. Negahban, M. J. Wainwright, "Fast global convergence of gradient methods for high-dimensional statistical recovery", Annals of Statistics, vol. 40, no. 5, pp. 2452–2482, 2012. [bibtex
  73. G. Raskutti, M. J. Wainwright, B. Yu, "Minimax-optimal rates for sparse additive models over kernel classes via convex programming", Journal of Machine Learning Research, vol. 12, pp. 389–427, March, 2012. [bibtex
  74. J. C. Duchi, A. Agarwal, M. J. Wainwright, "Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling", IEEE Trans. Automatic Control, vol. 57, no. 3, pp. 592–606, March, 2012. [bibtex
  75. A. Agarwal, P. L. Bartlett, P. Ravikumar, M. J. Wainwright, "Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization", IEEE Trans. Info. Theory, vol. 58, no. 5, pp. 3235–3249, May, 2012. [bibtex
  76. S. Negahban, P. Ravikumar, M. J. Wainwright, B. Yu, "A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers", Statistical Science, vol. 27, no. 4, pp. 538–557, December, 2012. [bibtex
  77. N. P. Santhanam, M. J. Wainwright, "Information-theoretic limits of selecting binary graphical models in high dimensions", IEEE Trans. Info Theory, vol. 58, no. 7, pp. 4117–4134, May, 2012. [bibtex
  78. J. C. Duchi, P. L. Bartlett, M. J. Wainwright, "Randomized smoothing for stochastic optimization", SIAM Journal on Optimization, vol. 22, no. 2, pp. 674–701, 2012. [bibtex
  79. P. Loh, M. J. Wainwright, "High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity", Annals of Statistics, vol. 40, no. 3, pp. 1637–1664, September, 2012. [bibtex
  80. A. A. Amini, M. J. Wainwright, "Sampled forms of functional PCA in reproducing kernel Hilbert spaces", Annals of Statistics, vol. 40, no. 5, pp. 2483–2510, 2012. [bibtex
  81. N. Noorshams, M. J. Wainwright, "Non-asymptotic analysis of an optimal algorithm for network-constrained averaging with noisy links", IEEE Journal Selected Topics in Signal Processing, vol. 5, no. 4, pp. 833–844, August, 2011. [bibtex
  82. R. Rajagopal, M. J. Wainwright, "Network-based consensus with general noisy channels", IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 373–385, January, 2011. [bibtex
  83. G. Raskutti, M. J. Wainwright, B. Yu, "Minimax rates of estimation for high-dimensional linear regression over $\ell_q$-balls", IEEE Trans. Information Theory, vol. 57, no. 10, pp. 6976––6994, October, 2011. [bibtex
  84. P. Ravikumar, M. J. Wainwright, G. Raskutti, B. Yu, "High-dimensional covariance estimation by minimizing $\ell_1$-penalized log-determinant divergence", Electronic Journal of Statistics, vol. 5, pp. 935–980, 2011. [bibtex
  85. S. Negahban, M. J. Wainwright, "Estimation of (near) low-rank matrices with noise and high-dimensional scaling", Annals of Statistics, vol. 39, no. 2, pp. 1069–1097, 2011. [bibtex
  86. G. Obozinski, M. J. Wainwright, M. I. Jordan, "Union support recovery in high-dimensional multivariate regression", Annals of Statistics, vol. 39, no. 1, pp. 1–47, January, 2011. [bibtex
  87. S. Negahban, M. J. Wainwright, "Simultaneous support recovery in high-dimensional regression: Benefits and perils of $\ell_1, \infty$-regularization", IEEE Trans. Info. Theory, vol. 57, no. 6, pp. 3481–3863, June, 2011. [bibtex
  88. M. J. Wainwright, E. Maneva, E. Martinian, "Lossy Source Compression using Low-Density Generator Matrix Codes: Analysis and Algorithms", IEEE Trans. Info. Theory, vol. 56, no. 3, pp. 1351–1368, March, 2010. [bibtex
  89. A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, K. Ramchandran, "Network coding for distributed storage systems", IEEE Trans. Info. Theory, vol. 56, no. 9, pp. 4539–4551, September, 2010. [bibtex
  90. G. Raskutti, M. J. Wainwright, B. Yu, "Restricted eigenvalue conditions for correlated Gaussian designs", Journal of Machine Learning Research, vol. 11, pp. 2241–2259, August, 2010. [bibtex
  91. P. Ravikumar, A. Agarwal, M. J. Wainwright, "Message-passing for graph-structured linear programs: Proximal projections, convergence and rounding schemes", Journal of Machine Learning Research, vol. 11, pp. 1043–1080, March, 2010. [bibtex
  92. W. Wang, M. J. Wainwright, K. Ramchandran, "Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices", IEEE Trans. Info Theory, vol. 56, no. 6, pp. 2967–2979, June, 2010. [bibtex
  93. P. Ravikumar, M. J. Wainwright, J. D. Lafferty, "High-dimensional Ising model selection using $\ell_1$-regularized logistic regression", Annals of Statistics, vol. 38, no. 3, pp. 1287–1319, 2010. [bibtex
  94. Z. Zhang, V. Anantharam, M. J. Wainwright, V. Anantharam, "An efficient 10GBASE-T Ethernet LDPC decoder design with low error floors", IEEE Jour. Solid-State Circuits, vol. 45, no. 4, pp. 843–855, March, 2010. [bibtex
  95. D. Omidiran, M. J. Wainwright, "High-dimensional Variable Selection with Sparse Random Projections: Measurement sparsity and statistical efficiency", Journal of Machine Learning Research, vol. 11, pp. 2361–2386, August, 2010. [bibtex
  96. M. J. Wainwright, "Information-theoretic bounds on sparsity recovery in the high-dimensional and noisy setting", IEEE Trans. Info. Theory, vol. 55, pp. 5728–5741, December, 2009. [bibtex
  97. M. J. Wainwright, "Sharp thresholds for high-dimensional and noisy sparsity recovery using $\ell_1$-constrained quadratic programming (Lasso)", IEEE Trans. Info. Theory, vol. 55, pp. 2183–2202, May, 2009. [bibtex
  98. M. J. Wainwright, E. Martinian, "Low-density codes that are optimal for binning and coding with side information", IEEE Trans. Info. Theory, vol. 55, no. 3, pp. 1061–1079, March, 2009. [bibtex
  99. X. Nguyen, M. J. Wainwright, M. I. Jordan, "On surrogate losses and $f$-divergences", Annals of Statistics, vol. 37, no. 2, pp. 876–903, 2009. [bibtex
  100. A. G. Dimakis, A. A. Gohari, M. J. Wainwright, "Guessing facets: Polytope structure and improved LP decoding", IEEE Trans. Information Theory, vol. 55, no. 8, pp. 3479–3487, August, 2009. [bibtex
  101. L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolic, M. J. Wainwright, "Predicting error floors of structured LDPC codes: Deterministic bounds and estimates", IEEE Jour. Sel. Areas. Comm, vol. 27, no. 6, pp. 908–917, August, 2009. [bibtex
  102. L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, B. Nikolic, "Analysis of Absorbing Sets and Fully Absorbing Sets for Array-Based LDPC Codes", IEEE Trans. Info. Theory, vol. 56, no. 1, pp. 181–201, January, 2009. [bibtex
  103. Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, M. J. Wainwright, B. Nikolic, "Design of LDPC Decoders for Low Bit Error Rate Performance: Quantization and Algorithm Choices", IEEE Trans. Communications, 2009. [bibtex]  (To appear
  104. A. A. Amini, M. J. Wainwright, "High-dimensional analysis of semdefinite relaxations for sparse principal component analysis", Annals of Statistics, vol. 5B, pp. 2877–2921, 2009. [bibtex
  105. M. J. Wainwright, M. I. Jordan, "Graphical models, exponential families and variational inference", Foundations and Trends in Machine Learning, vol. 1, pp. 1––305, December, 2008. [bibtex
  106. X. Nguyen, M. J. Wainwright, M. I. Jordan, "On optimal quantization rules for some sequential decision problems", IEEE Trans. Info. Theory, vol. 54, no. 7, pp. 3285–3295, July, 2008. [bibtex
  107. A. G. Dimakis, A. Sarwate, M. J. Wainwright, "Geographic gossip: Efficient averaging for sensor networks", IEEE Trans. Signal Processing, vol. 53, pp. 1205–1216, March, 2008. [bibtex
  108. C. Daskalakis, A. G. Dimakis, R. M. Karp, M. J. Wainwright, "Probabilistic analysis of linear programming decoding", IEEE Trans. Information Theory, vol. 54, no. 8, pp. 3565–3578, 2008. [bibtex
  109. T. G. Roosta, M. J. Wainwright, S. S. Sastry, "Convergence analysis of reweighted sum-product algorithms", IEEE Trans. Signal Processing, vol. 56, no. 9, pp. 4293–4305, September, 2008. [bibtex
  110. M. J. Wainwright, "Sparse graph codes for side information and binning", IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 47–57, September, 2007. [bibtex
  111. E. Maneva, E. Mossel, M. J. Wainwright, "A new look at survey propagation and its generalizations", Journal of the ACM, vol. 54, no. 4, pp. 2–41, 2007. [bibtex
  112. J. Feldman, T. Malkin, R. A. Servedio, C. Stein, M. J. Wainwright, "LP Decoding Corrects a Constant Fraction of Errors", IEEE Trans. Information Theory, vol. 53, no. 1, pp. 82–89, January, 2007. [bibtex
  113. M. J. Wainwright, "Estimating the ``wrong'' graphical model: Benefits in the computation-limited regime", Journal of Machine Learning Research, vol. 7, pp. 1829–1859, September, 2006. [bibtex
  114. M. J. Wainwright, M. I. Jordan, "Log-determinant relaxation for approximate inference in discrete Markov random fields", IEEE Trans. Signal Processing, vol. 54, no. 6, pp. 2099–2109, June, 2006. [bibtex
  115. M. Cetin, L. Chen, J. W. Fisher, A. T. Ihler, R. L. Moses, M. J. Wainwright, A. S. Willsky, "Distributed fusion in sensor networks", IEEE Signal Processing Magazine, vol. 23, pp. 42–55, July, 2006. [bibtex
  116. M. J. Wainwright, T. S. Jaakkola, A. S. Willsky, "Exact MAP estimates via agreement on (hyper)trees: Linear programming and message-passing", IEEE Trans. Information Theory, vol. 51, no. 11, pp. 3697–3717, November, 2005. [bibtex
  117. M. J. Wainwright, T. S. Jaakkola and A. S. Willsky, "A new class of upper bounds on the log partition function", IEEE Trans. Info. Theory, vol. 51, no. 7, pp. 2313–2335, July, 2005. [bibtex
  118. X. Nguyen, M. J. Wainwright, M. I. Jordan, "Nonparametric decentralized detection using kernel methods", IEEE Trans. Signal Processing, vol. 53, no. 11, pp. 4053–4066, November, 2005. [bibtex
  119. J. Feldman, M. J. Wainwright, D. R. Karger, "Using linear programming to decode binary linear codes", IEEE Trans. Info. Theory, vol. 51, pp. 954–972, March, 2005. [bibtex
  120. M. J. Wainwright, T. S. Jaakkola and A. S. Willsky, "Tree consistency and bounds on the max-product algorithm and its generalizations", Statistics and Computing, vol. 14, pp. 143–166, April, 2004. [bibtex
  121. E. Sudderth, M. J. Wainwright, A. S. Willsky, "Embedded trees: Estimation of Gaussian processes on graphs with cycles", IEEE Trans. Signal Processing, vol. 52, no. 11, pp. 3136–3150, 2004. [bibtex
  122. M. J. Wainwright, T. S. Jaakkola and A. S. Willsky, "Tree-based reparameterization framework for analysis of sum-product and related algorithms", IEEE Trans. Info. Theory, vol. 49, no. 5, pp. 1120–1146, May, 2003. [bibtex
  123. J. Portilla, V. Strela, M. J. Wainwright, E. P. Simoncelli, "Image denoising using scale mixtures of Gaussians in the wavelet domain", IEEE Trans. Image Processing, vol. 12, pp. 1338–1351, 2003. [bibtex
  124. M. J. Wainwright, E. P. Simoncelli, A. S. Willsky, "Random cascades on wavelet trees and their use in modeling and analyzing natural images", Applied Computational and Harmonic Analysis, vol. 11, pp. 89–123, 2001. [bibtex
  125. M. J. Wainwright, "Visual adaptation as optimal information transmission", Vision Research, vol. 39, pp. 3960–3974, 1999. [bibtex

Conference Articles

  1. E. Xia, M. J. Wainwright, "Krylov-Bellman boosting: Super-linear policy evaluation in general state spaces", Conference on Artificial Intellgence and Statistics, vol. 206, pp. 9137–9166, April, 2023. [pdf]  [bibtex
  2. R. Pathak, C. Ma, M. J. Wainwright, "A new similarity measure for covariate shift with applications to nonparametric regression", International Conference on Machine Learning, July, 2022. [bibtex
  3. A. Zanette, M. J. Wainwright, "Stabilizing Q-learning with Linear Architectures for Provably Efficient Learning", International Conference on Machine Learning, July, 2022. [bibtex
  4. W. Mou, A. Pananjady, M. J. Wainwright, P. L. Bartlett, "Optimal and instance-dependent guarantees for Markovian linear stochastic approximation", Conference on Learning Theory, July, 2022. [bibtex
  5. A. Zanette, M. J. Wainwright, "Bellman Residual Orthogonalization for Offline Reinforcement Learning", Neural Information Processing Systems, December, 2022. [bibtex]  (Long version posted as arxiv:2203.12786
  6. C. J. Li, W. Mou, M. J. Wainwright, M. I. Jordan, "ROOT-SGD: Sharp Nonasymptotics and Asymptotic Efficiency in a Single Algorithm", Conference on Learning Theory, July, 2022. [bibtex
  7. A. Zanette, M. J. Wainwright, E. Brunskill, "Provable benefits of actor-critic methods in offline reinforcement learning", Neural Information Processing Systems, December, 2021. [bibtex]  [arxiv]  (arXiv:2108.08812
  8. R. Dwivedi, K. Khamaru, N. Ho, M. J. Wainwright, M. I. Jordan, B. Yu, "Sharp analysis of expectation-maximization for weakly identifiable models", AISTATS, 2021. [bibtex
  9. R. Pathak, M. J. Wainwright, "FedSplit: An algorithmic framework for fast federated optimization", NeurIPS (Neural Information Processing Systems), December, 2020. [bibtex
  10. W. Mou, C. J. Li, M. J. Wainwright, P. L. Bartlett, M. I. Jordan, "On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration", Conference on Learning Theory (COLT), vol. 125, pp. 2947–2997, 2020. [bibtex
  11. K. Bhatia, A. Pananjady, P. L. Bartlett, A. D. Dragan, M. J. Wainwright, "Preference learning along multiple criteria: A game-theoretic perspective", Neural Information Processing Systems, 2020. [bibtex
  12. J. Chen, M. I. Jordan, M. J. Wainwright, "HopSkipJump Attack: A query-efficient decision-based attack", IEEE Conference on Security and Privacy, October, 2019. [bibtex
  13. D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. L. Bartlett, M. J. Wainwright, "Derivative-free methods for policy optimization: Guarantees for linear-quadratic systems", AISTATS: Conference on AI and Statistics, 2019. [bibtex
  14. J. Chen, L. Song, M. J. Wainwright, M. I. Jordan, "L-Shapley and C-Shapley: Efficient Model Interpretation for Structured Data", International Conference on Learning Representations, May, 2019. [bibtex
  15. R. Heckel, M. Simchowitz, K. Ramchandran, M. J. Wainwright, "Approximate ranking from pairwise comparisons", AISTATS: Conference on AI and Statistics, vol. 84, pp. 1057–1066, 2018. [bibtex
  16. J. Chen, L. Song, M. J. Wainwright, M. I. Jordan, "Learning to Explain: An Information-Theoretic Perspective on Model Interpretation", ICML: International Conference on Machine Learning, 2018. [bibtex
  17. R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, "Theoretical guarantees for the EM algorithm when applied to misspecified Gaussian mixture models", NeurIPS Conference, December, 2018. [bibtex
  18. C. Mao, A. Pananjady, M. J. Wainwright, "Breaking the $1/\sqrtn$-barrier: Faster rates for permutation-based models in polynomial time", Conference on Learning Theory (COLT), no. 75, pp. 2037––2042, July, 2018. [pdf]  [bibtex
  19. K. Khamaru, M. J. Wainwright, "Convergence guarantees for a class of non-convex and non-smooth optimization problems", ICML: International Conference on Machine Learning, 2018. [bibtex
  20. R. Dwivedi, Y. Chen, M. J. Wainwright, B. Yu, "Log-concave sampling: Metropolis-Hastings algorithms are fast.", COLT: Conference on Computational Learning Theory, 2018. [bibtex
  21. F. Yang, Y. Wei, M. J. Wainwright, "Early stopping for kernel boosting algorithms: A general analysis with localized complexities", NeurIPS (Neural Information Processing Systems), 2017. [bibtex
  22. J. Chen, M. Stern, M. J. Wainwright, M. I. Jordan, "Kernel Feature Selection via Conditional Covariance Minimization", NeurIPS: Advances in Neural Information Processing Systems, pp. 6949–6958, 2017. [bibtex
  23. A. Ramdas, J. Chen, M. J. Wainwright, M. I. Jordan, "QuTE: Decentralized multiple testing on sensor networks with false discovery rate control", 56th IEEE Conference on Decision and Control (CDC), 12, 2017. [bibtex
  24. A. Ramdas, F. Yang, M. J. Wainwright, M. I. Jordan, "Online control of false discovery rate with decaying memory", Neural Information Processing Systems, December, 2017. [bibtex
  25. F. Yang, A. Ramdas, K. Jamieson, M. J. Wainwright, "A framework for multi-armed bandit testing with online FDR control", Neural Information Processing Systems, December, 2017. [bibtex
  26. Y. Zhang, J. Lee, M. J. Wainwright, M. I. Jordan, "On the learnability of fully-connected neural networks", AISTATS, April, 2017. [bibtex
  27. A. Pananjady, M. J. Wainwright, T. Courtade, "Denoising linear models with permuted data", ISIT: IEEE International Symposium on Information Theory, 2017. [bibtex
  28. Y. Zhang, P. Liang, M. J. Wainwright, "Convexified Convolutional Neural Networks", ICML: 34th International Conference on Machine Learning, vol. 70, pp. 4044–4053, August, 2017. [pdf]  [bibtex
  29. Y. Wei, M. J. Wainwright, "Sharp minimax rates for testing monotone distributions", International Symposium on Information Theory, July, 2016. [bibtex
  30. C. Jin, S. Balakrishnan, M. J. Wainwright, M. I. Jordan, "Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences", NeurIPS Conference, December, 2016. [bibtex
  31. A. El Alaoui, X. Cheng, A. Ramdas, M. J. Wainwright, M. I. Jordan, "Asymptotic behavior of $\ell_p$-based Laplacian regularization in semi-supervised learning", COLT: Conference on Learning Theory, June, 2016. [bibtex
  32. C. Jin, S. Balakrishnan, M. J. Wainwright, M. I. Jordan, "Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences", NeurIPS Conference, December, 2016. [bibtex
  33. M. J. Wainwright, "Structured regularizers for high-dimensional problems: Statistical and computational issues", Annual Review of Statistics and its Applications, vol. 1, pp. 233–253, January, 2014. [bibtex
  34. M. J. Wainwright, "Constrained forms of statistical minimax: Computation, communication and privacy", Proceedings of the International Congress of Mathematicians, 2014. [bibtex
  35. Y. Zhang, M. J. Wainwright, M. I. Jordan, "Lower bounds on the performance of polynomial-time algorithms for sparse linear regression", Conference on Computational Learning Theory, June, 2014. [bibtex
  36. J. C. Duchi, M. J. Wainwright, M. I. Jordan, "Local privacy and statistical minimax rates", Foundations of Computer Science (FOCS) Conference, 2014. [bibtex
  37. Y. Zhang, J. C. Duchi, and M. I. Jordan, M. J. Wainwright, "Information-theoretic lower bounds for distributed statistical estimation with communication constraints", NeurIPS: Neural Information Processing Systems Conference, 2013. [bibtex
  38. Y. Zhang, J. C. Duchi, M. J. Wainwright, "Divide and Conquer Kernel Ridge Regression", Computational Learning Theory (COLT) Conference, July, 2013. [bibtex
  39. P. Loh, M. J. Wainwright, "No voodoo here! Learning discrete graphical models via inverse covariance estimation", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex
  40. J. C. Duchi, M. J. Wainwright, M. I. Jordan, "Privacy-aware learning", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex
  41. J. C. Duchi, A. Wibisono, M. J. Wainwright and M. I. Jordan, "Finite sample convergence rates of zero-order stochastic optimization methods", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex
  42. Y. Zhang, J. C. Duchi, M. J. Wainwright, "Communication-efficient algorithms for statistical optimization", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex
  43. A. Agarwal, S. Negahban, M. J. Wainwright, "Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex
  44. P. Loh, M. J. Wainwright, "High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity", NeurIPS Conference, December, 2011. [bibtex
  45. S. Negahban, M. J. Wainwright, "Estimation of (near) low-rank matrices with noise and high-dimensional scaling", Proceedings of the ICML Conference, June, 2010. [bibtex
  46. W. Wang, M. J. Wainwright, K. Ramchandran, "Information-theoretic bounds on model selection for Gaussian Markov random fields", IEEE International Symposium on Information Theory, 2010. [bibtex
  47. J. Duchi, A. Agarwal, M. J. Wainwright, "Distributed dual averaging in networks", NeurIPS Conference, December, 2009. [bibtex
  48. N. P. Santhanam, M. J. Wainwright, "Information-theoretic limits of high-dimensional model selection", International Symposium on Information Theory, July, 2008. [bibtex
  49. S. Negahban, M. J. Wainwright, "Benefits and perils of block regularization in high dimensions", Neural Information Processing Systems (NeurIPS), December, 2008. [bibtex
  50. P. Lee, L. Dolecek, Z. Zhang, V. Anantharam, B. Nikolic, M. J. Wainwright, "Error Floors in LDPC Codes: Fast Simulation, Bounds and Hardware Emulation", IEEE Int. Symp. Info. Theory, July, 2008. [bibtex
  51. Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam and M. J. Wainwright, "Lowering LDPC error floors by post-processing", Proc. IEEE GLOBECOM, September, 2008. [bibtex
  52. E. B. Sudderth, M. J. Wainwright, A. S. Willsky, "Loop series and Bethe variational bounds for attractive graphical models", NeurIPS 21, 2007. [bibtex
  53. C. Daskalakis, A. G. Dimakis, R. M. Karp, M. J. Wainwright, "Probabilistic Analysis of Linear Programming Decoding", Proceedings of the 18th Annual Symposium on Discrete Algorithms (SODA), January, 2007. [bibtex
  54. L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, B. Nikolic, "Analysis of absorbing sets for array-based LDPC codes", IEEE Int. Conf. Communications (ICC), June, 2007. [bibtex
  55. Z. Zhang, L. Dolecek, V. Anantharam, M. J. Wainwright, B. Nikolic, "Quantization effects in low-density parity-check decoders", IEEE Int. Conf. Communications (ICC), pp. 6321–6237, June, 2007. [bibtex
  56. L. Dolecek, Z. Zhang, M. J. Wainwright, V. Anantharam, M. J. Wainwright, "Evaluation of the low frame error rate performance of LDPC codes using importance sampling", Information Theory Workshop (ITW), September, 2007. [bibtex
  57. M. J. Wainwright, P. Ravikumar, J. D. Lafferty, "High-dimensional graph selection using $\ell_1$-regularized logistic regression", NeurIPS Conference, December, 2006. [bibtex
  58. X. Nguyen, M. J. Wainwright, M. I. Jordan, "On optimal quantization rules for some sequential decision problems", International Symposium on Information Theory, July, 2006. [bibtex]  (Available at arxiv:math.ST/0608556
  59. A. G. Dimakis, A. Sarwate, M. J. Wainwright, "Geographic Gossip: Efficient aggregation in sensor networks", Information Processing in Sensor Networks, March, 2006. [bibtex
  60. R. Rajagopal, M. J. Wainwright, P. Varaiya, "Universal quantile estimation with feedback in the communication-constrained setting", International Symposium on Information Theory, July, 2006. [bibtex
  61. A. G. Dimakis, M. J. Wainwright, "Guessing Facets: Improved LP decoding and Polytope Structure", International Symposium on Information Theory, July, 2006. [bibtex
  62. Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, M. J. Wainwright, "Investigation of error floors of structured low-density parity check codes by hardware emulation", Proceedings of IEEE Globecom, November, 2006. [bibtex
  63. E. Martinian, M. J. Wainwright, "Low density codes achieve the rate-distortion bound", Data Compression Conference, vol. 1, pp. 153–162, March, 2006. [bibtex]  (Available at arxiv:cs.IT/061123
  64. E. Martinian, M. J. Wainwright, "Analysis of LDGM and compound codes for lossy compression and binning", Workshop on Information Theory and Applications (ITA), pp. 229–233, February, 2006. [bibtex]  (Available at arxiv:cs.IT/0602046
  65. E. Martinian, M. J. Wainwright, "Low density codes can achieve the Wyner-Ziv and Gelfand-Pinsker bounds", International Symposium on Information Theory, pp. 484–488, July, 2006. [bibtex]  (Available at arxiv:cs.IT/0605091
  66. M. J. Wainwright, E. Maneva, "Lossy source coding by message-passing and decimation over generalized codewords of LDGM codes", International Symposium on Information Theory, September, 2005. [bibtex]  (Available at arxiv:cs.IT/0508068
  67. E. Maneva, E. Mossel, M. J. Wainwright, "A New Look at Survey Propagation and its Generalizations", Proceedings of the 16th Annual Symposium on Discrete Algorithms (SODA), pp. 1089–1098, 2005. [bibtex
  68. V. Kolmogorov, M. J. Wainwright, "On optimality properties of tree-reweighted message-passing", Uncertainty in Artificial Intelligence, July, 2005. [bibtex
  69. X. Nguyen, M. J. Wainwright, M. I. Jordan, "Divergence measures, surrogate loss functions and experimental design", Advances in Neural Information Processing Systems, 2005. [bibtex
  70. M. J. Wainwright, M. I. Jordan, "Variational inference in graphical models: The view from the marginal polytope", Proceedings of the Allerton Conference on Communication, Control and Computing, October, 2003. [bibtex
  71. L. Chen, M. J. Wainwright, M. Cetin, A. Willsky, "Multitarget-multisensor data association using the tree-reweighted \ max-product algorithm", SPIE Aerosense Conference, April, 2003. [bibtex
  72. J. Feldman, D. R. Karger, M. J. Wainwright, "Using linear programming to decode LDPC codes", Conference on Information Science and Systems, March, 2003. [bibtex
  73. M. J. Wainwright, T. S. Jaakkola, A. S. Willsky, "Tree-based reparameterization for approximate inference on loopy graphs", NeurIPS 14, 2002. [bibtex
  74. M. J. Wainwright, T. S. Jaakkola, A. S. Willsky, "A new class of upper bounds on the log partition function", Uncertainty in Artificial Intelligence, vol. 18, August, 2002. [bibtex
  75. M. J. Wainwright, T. S. Jaakkola, A. S. Willsky, "Exact MAP estimates by (hyper)tree agreement", NeurIPS, vol. 15, December, 2002. [bibtex
  76. M. J. Wainwright, E. B. Sudderth, A. S. Willsky, "Tree-based modeling and estimation of Gaussian processes on graphs with cycles", NeurIPS 13, pp. 661–667, 2001. [bibtex
  77. J. Portilla, V. Strela, E. Simoncelli, M. J. Wainwright, "Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain", IEEE Int. Conf. Image Proc., September, 2001. [bibtex
  78. M. J. Wainwright, E. P. Simoncelli, "Scale mixtures of Gaussians and the statistics of natural images", Neural Information Processing Systems 12, vol. 12, pp. 855–861, December, 1999. [bibtex
  79. M. J. Wainwright, E. P. Simoncelli, "Explaining adaptation in V1 neurons with a statistically-optimized normalization model", Invest. Opthamology and Visual Science (Supplement), pp. 3017, 1999. [bibtex

Research Reports

  1. E. Xia, Y. Yan, M. J. Wainwright, "Inference under staggered adoption: Case study of the Affordable Care Act", Tech. Report, arxiv:2412.09482, December, 2024. [www]  [bibtex
  2. E. Xia, M. J. Wainwright, "Prediction Aided by Surrogate Training", Tech. Report, arxiv:2412.09364, December, 2024. [www]  [bibtex
  3. E. Xia, W. Newey, M. J. Wainwright, "Instrumental variables: A non-asymptotic viewpoint", Tech. Report, arxiv:2410:02015, October, 2024. [www]  [bibtex
  4. Y. Yan, M. J. Wainwright, "Entrywise Inference for Causal Panel Data: A Simple and Instance-Optimal Approach", Tech. Report, 2401.1366, January, 2024. [pdf]  [www]  [bibtex
  5. Y. Duan, M. J. Wainwright, "Taming data-hungry reinforcement learning? Stability in continuous state-action spaces", Tech. Report, 2401.05233, January, 2024. [pdf]  [www]  [bibtex
  6. R. Pathak, M. J. Wainwright, "Estimating linear functionals with elliptical constraints: Sharp results for random operators", Tech. Report, 1, June, 2024. [bibtex
  7. F. Shi, S. Bates, M. J. Wainwright, "Sharp Results for Hypothesis Testing with Risk-Sensitive Agents", Tech. Report, 2412.16452, 2024. [bibtex]  (https://arxiv.org/pdf/2412.16452
  8. J. Cai, R. Chen, M. J. Wainwright, L. Zhao, "Doubly high-dimensional contextual bandits: An interpretable model for joint assortment-pricing", Tech. Report, 1, September, 2023. [www]  [bibtex
  9. F. Su, W. Mou, P. Ding, M. J. Wainwright, "A decorrelation method for general regression adjustment in randomized experiments", Tech. Report, arXiv:2311.10076, November, 2023. [bibtex
  10. F. Su, W. Mou, P. Ding, M. J. Wainwright, "When is the estimated propensity score better? High-dimensional analysis and bias correction", Tech. Report, 2303.17102, March, 2023. [bibtex
  11. M. Celentano, M. J. Wainwright, "Challenges of the inconsistency regime: Novel debiasing methods for missing data models", Tech. Report, arXiv:2309.01362, September, 2023. [bibtex
  12. W. Mou, P. Ding, P. L. Bartlett, M. J. Wainwright, "Kernel-based off-policy estimation with overlap: Instance-optimality beyond semi-parametric efficiency", Tech. Report, 1, January, 2023. [bibtex
  13. W. Mou, M. J. Wainwright, P. L. Bartlett, "Off-policy estimation of linear functionals: Non-asymptotic theory for semi-parametric efficiency", Tech. Report, 2209.13075, September, 2022. [bibtex]  (arxiv:2209.13075
  14. Y. Duan, M. J. Wainwright, "Policy evaluation from a single path: Multi-step methods, mixing and mis-specification", Tech. Report, 2211.03899, November, 2022. [bibtex
  15. W. Mou, K. Khamaru, M. J. Wainwright, P. L. Bartlett, M. I. Jordan, "Optimal variance-reduced stochastic approximation in Banach spaces", Tech. Report, 1, January, 2022. [bibtex
  16. M. Rabinovich, M. I. Jordan, M. J. Wainwright, "Lower bounds in multiple testing: A framework based on derandomized proxies", Tech. Report, 2005.03725, May, 2020. [bibtex
  17. M. J. Wainwright, "Stochastic approximation with cone-contractive operators: Sharp $\ell_\infty$-bounds for Q-learning", Tech. Report, arxiv:1905.06265, May, 2019. [bibtex
  18. M. J. Wainwright, "Variance-reduced $Q$-learning is minimax optimal", Tech. Report, arxiv:1906.04697, June, 2019. [bibtex
  19. W. Mou, N. Ho, M. J. Wainwright, P. Bartlett, M. I. Jordan, "Sampling for Bayesian Mixture Models: MCMC with Polynomial-Time Mixing", Tech. Report, 1, December, 2019. [bibtex
  20. R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, B. Yu, "Challenges with EM in application to weakly identifiable mixture models", Tech. Report, arXiv:1902.00194, January, 2019. [bibtex
  21. N. B. Shah, S. Balakrishnan, M. J. Wainwright, "Low permutation-rank matrices: Structural properties and noisy completion", Tech. Report, 1, September, 2017. [bibtex
  22. Y. Chen, M. J. Wainwright, "Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees", Tech. Report, arxiv:1509.03025, September, 2015. [bibtex
  23. Y. Zhang, J. Lee, M. J. Wainwright, M. I. Jordan, "Learning halfspaces and neural networks with random initialization", Tech. Report, arXiv:1511.07948, November, 2015. [bibtex
  24. J. C. Duchi, M. I. Jordan, M. J. Wainwright, Y. Zhang, "Optimality guarantees for distributed statistical estimation", Tech. Report, 1, June, 2014. [bibtex
  25. J. C. Duchi, M. J. Wainwright, "Distance-based and continuum Fano inequalities with applications to statistical estimation", Tech. Report, arXiv:1311.2669, 2013. [bibtex
  26. M. J. Wainwright, M. I. Jordan, "Treewidth-based conditions for exactness of the Sherali-Adams and Lasserre relaxations", Tech. Report, 1, September, 2004. [bibtex

Theses

  1. M. J. Wainwright, "Stochastic processes on graphs with cycles: geometric and variational approaches", PhD thesis, MIT, January, 2002. [bibtex

Miscellaneous

  1. M. J. Wainwright, "Graphical models and message-passing algorithms: some introductory lectures", Mathematical foundations of complex networked information system, vol. 2141, 2015. [bibtex
  2. M. J. Wainwright, M. I. Jordan, "A variational principle for graphical models", New Directions in Statistical Signal Processing, October, 2006. [bibtex
  3. M. J. Wainwright, O. Schwartz, E. P. Simoncelli, "Natural image statistics and divisive normalization: Modeling nonlinearities and adaptation in cortical neurons", Statistical Theories of the Brain, 2002. [bibtex