Martin J. Wainwright: Publications

 

• Sorted by type • 2024 • 2023 • 2022 • 2021 • 2020 • 2019 • 2018 • 2017 • 2016 • 2015 • 2014 • 2013 • 2012 • 2011 • 2010 • 2009 • 2008 • 2007 • 2006 • 2005 • 2004 • 2003 • 2002 • 2001 • 1999 • 

2024

  1. Y. Duan, M. Wang, M. J. Wainwright, "Optimal value estimation using kernel-based temporal difference methods", Annals of Statistics, vol. 1, pp. To appear, 2024. [pdf]  [bibtex
  2. W. Mou, A. Pananjady, M. J. Wainwright, P. L. Bartlett, "Optimal and instance-dependent guarantees for Markovian linear stochastic approximation", Mathematical Statistics and Learning, vol. 7, no. 1, pp. 41–153, 2024. [pdf]  [bibtex
  3. W. Mou, N. Ho, M. J. Wainwright, P. Bartlett, M. I. Jordan, "A diffusion process perspective on posterior contraction rates for parameters", SIAM Journal on Math. Data Sci., pp. To appear, 2024. [pdf]  [bibtex
  4. K. Khamaru, E. Xia, M. J. Wainwright and M. I. Jordan, "Instance-optimality in optimal value estimation: Adaptivity via variance-reduced Q-learning", IEEE Trans. Info. Theory, vol. 1, pp. To appear, April, 2024. [pdf]  [bibtex
  5. Y. Yan, M. J. Wainwright, "Entrywise Inference for Causal Panel Data: A Simple and Instance-Optimal Approach", Tech. Report, arXiv: 2401.1366, January, 2024. [pdf]  [www]  [bibtex
  6. Y. Duan, M. J. Wainwright, "Taming data-hungry reinforcement learning? Stability in continuous state-action spaces", Tech. Report, 2401.05233, January, 2024. [pdf]  [www]  [bibtex

2023

  1. C. Ma, R. Pathak, M. J. Wainwright, "Optimally tackling covariate shift in RKHS-based nonparametric regression", Annals of Statistics, vol. 51, no. 2, 2023. [pdf]  [bibtex
  2. E. Xia, K. Khamaru, M. J. Wainwright, M. I. Jordan, "Instance-dependent confidence and early stopping in reinforcement learning", Journal of Machine Learning Research, pp. 1–43, 2023. [pdf]  [bibtex
  3. W. Mou, A. Pananjady, M. J. Wainwright, "Optimal oracle inequalities for solving projected fixed-point equations", Mathematics of Operations Research, vol. 48, no. 4, pp. 2308–2336, November, 2023. [pdf]  [bibtex
  4. R. Dwivedi, C. Singh, B. Yu, M. J. Wainwright, "Revisiting minimum description length complexity in overparameterized models", Journal of Machine Learning Research, vol. 24, pp. 1–59, 2023. [pdf]  [bibtex
  5. E. Xia, M. J. Wainwright, "Krylov-Bellman boosting: Super-linear policy evaluation in general state spaces", Conference on Artificial Intellgence and Statistics, vol. 206, pp. 9137–9166, April, 2023. [pdf]  [bibtex
  6. J. Cai, R. Chen, M. J. Wainwright, L. Zhao, "Doubly high-dimensional contextual bandits: An interpretable model for joint assortment-pricing", Tech. Report, 1, September, 2023. [www]  [bibtex
  7. F. Su, W. Mou, P. Ding, M. J. Wainwright, "A decorrelation method for general regression adjustment in randomized experiments", Tech. Report, arXiv:2311.10076, November, 2023. [bibtex
  8. F. Su, W. Mou, P. Ding, M. J. Wainwright, "When is the estimated propensity score better? High-dimensional analysis and bias correction", Tech. Report, 2303.17102, March, 2023. [bibtex
  9. M. Celentano, M. J. Wainwright, "Challenges of the inconsistency regime: Novel debiasing methods for missing data models", Tech. Report, arXiv:2309.01362, September, 2023. [bibtex
  10. L. Lin, K. Khamaru, M. J. Wainwright, "Semi-parametric inference based on adaptively collected data", Tech. Report, arXiv:2303.02534, March, 2023. [bibtex
  11. W. Mou, P. Ding, P. L. Bartlett, M. J. Wainwright, "Kernel-based off-policy estimation with overlap: Instance-optimality beyond semi-parametric efficiency", Tech. Report, 1, January, 2023. [bibtex
  12. R. Pathak, M. J. Wainwright, L. Xiao, "Noisy recovery from random linear observations: Sharp minimax rates under elliptical constraints", Tech. Report, arxiv:2303.12613, March, 2023. [pdf]  [bibtex

2022

  1. N. Ho, K. Khamaru, R. Dwivedi, M. J. Wainwright, M. I. Jordan, B. Yu, "Instability, Computational Efficiency and Statistical Accuracy", Journal of Machine Learning Research, pp. To appear, November, 2022. [bibtex]  (Originally posted as arxiv:2005.11411
  2. W. Mou, N. Flammarion, M. J. Wainwright, P. L. Bartlett, "An efficient sampling algorithm for non-smooth composite potentials", Journal of Machine Learning Research, vol. 23, pp. 1–50, 2022. [pdf]  [bibtex
  3. C. Ma, B. Zhu, J. Jiao, M. J. Wainwright, "Minimax Off-Policy Evaluation for Multi-Armed Bandits", IEEE Trans. Information Theory, vol. 68, pp. 5314–5339, March, 2022. [bibtex
  4. R. Pathak, C. Ma, M. J. Wainwright, "A new similarity measure for covariate shift with applications to nonparametric regression", International Conference on Machine Learning, July, 2022. [bibtex
  5. A. Zanette, M. J. Wainwright, "Stabilizing Q-learning with Linear Architectures for Provably Efficient Learning", International Conference on Machine Learning, July, 2022. [bibtex
  6. W. Mou, A. Pananjady, M. J. Wainwright, P. L. Bartlett, "Optimal and instance-dependent guarantees for Markovian linear stochastic approximation", Conference on Learning Theory, July, 2022. [bibtex
  7. A. Zanette, M. J. Wainwright, "Bellman Residual Orthogonalization for Offline Reinforcement Learning", Neural Information Processing Systems, December, 2022. [bibtex]  (Long version posted as arxiv:2203.12786
  8. C. J. Li, W. Mou, M. J. Wainwright, M. I. Jordan, "ROOT-SGD: Sharp Nonasymptotics and Asymptotic Efficiency in a Single Algorithm", Conference on Learning Theory, July, 2022. [bibtex
  9. W. Mou, M. J. Wainwright, P. L. Bartlett, "Off-policy estimation of linear functionals: Non-asymptotic theory for semi-parametric efficiency", Tech. Report, 2209.13075, September, 2022. [bibtex]  (arxiv:2209.13075
  10. Y. Duan, M. J. Wainwright, "Policy evaluation from a single path: Multi-step methods, mixing and mis-specification", Tech. Report, arXiv:2211.03899, November, 2022. [bibtex
  11. W. Mou, K. Khamaru, M. J. Wainwright, P. L. Bartlett, M. I. Jordan, "Optimal variance-reduced stochastic approximation in Banach spaces", Tech. Report, 1, January, 2022. [bibtex

2021

  1. A. Pananjady, M. J. Wainwright, "Instance-dependent $\ell_\infty$-bounds for policy evaluation in tabular reinforcement learning", IEEE Trans. Info. Theory, vol. 67, no. 1, pp. 566–585, January, 2021. [bibtex
  2. W. Mou, N. Flammarion, M. J. Wainwright, P. L. Bartlett, "Improved bounds for discretization of Langevin diffusions: Near optimal rates without convexity", Bernoulli, 2021. [bibtex
  3. W. Mou, Y. Ma, M. J. Wainwright, P. L. Bartlett, M. I. Jordan, "High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm", Journal of Machine Learning Research, vol. 22, pp. 1–41, January, 2021. [bibtex
  4. K. Khamaru, A. Pananjady, F. Ruan, M. J. Wainwright, M. I. Jordan, "Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis", SIAM J. Math. Data Science, vol. 3, no. 4, pp. 1013–1040, October, 2021. [bibtex
  5. N. B. Shah, S. Balakrishnan, M. J. Wainwright, "A Permutation-based Model for Crowd Labeling: Optimal Estimation and Robustness", IEEE Trans. Info. Theory, vol. 67, pp. 4162–4184, 2021. [bibtex
  6. A. Zanette, M. J. Wainwright, E. Brunskill, "Provable benefits of actor-critic methods in offline reinforcement learning", Neural Information Processing Systems, December, 2021. [bibtex]  [arxiv]  (arXiv:2108.08812
  7. R. Dwivedi, K. Khamaru, N. Ho, M. J. Wainwright, M. I. Jordan, B. Yu, "Sharp analysis of expectation-maximization for weakly identifiable models", AISTATS, 2021. [bibtex
  8. K. Khamaru, Y. Deshpande, L. Mackey, M. J. Wainwright, "Near-optimal inference in adaptive linear regression", Tech. Report, 2107.02266, July, 2021. [bibtex

2020

  1. C. Mao, A. Pananjady, M. J. Wainwright, "Towards Optimal Estimation of Bivariate Isotonic Marices with Unknown Permutations", Annals of Statistics, vol. 48, no. 6, pp. 3183–3205, 2020. [bibtex
  2. Y. Wei, B. Fang, M. J. Wainwright, "From Gauss to Kolmogorov: Localized measures of complexity for ellipses", Electronic Journal of Statistics, vol. 14, no. 2, pp. 2988–3031, 2020. [bibtex
  3. Y. Chen, R. Dwivedi, M. J. Wainwright, B\ . Yu, "Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients", Journal of Machine Learning Research, vol. 21, no. 92, pp. 1–71, 2020. [bibtex
  4. M. Rabinovich, A. Ramdas, M. I. Jordan, M. J. Wainwright, "Function-Specific Mixing Times and Concentration Away from Equilibrium", Bayesian Analysis, vol. 2, pp. 505–532, 2020. [bibtex
  5. D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. L. Bartlett, M. J. Wainwright, "Derivative-free methods for policy optimization: Guarantees for linear-quadratic systems", Journal of Machine Learning Research, vol. 51, pp. 1––51, 2020. [bibtex
  6. A. Pananjady, C. Mao, V. Muthukumar, M. J. Wainwright, T. A. Courtade, "Worst-case vs Average-case Design for Estimation from Fixed Pairwise Comparisons", Annals of Statistics, vol. 48, no. 2, pp. 1072–1097, 2020. [bibtex
  7. Y. Chen, R. Dwivedi, M. J. Wainwright, B. Yu, "Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients", Journal of Machine Learning Research, vol. 21, no. 92, pp. 1–72, May, 2020. [bibtex
  8. M. Rabinovich, A. Ramdas, M. J. Wainwright, M. I. Jordan, "Optimal Rates and Tradeoffs in Multiple Testing", Statistica Sinica, vol. 30, pp. 741–762, 2020. [bibtex
  9. Y. Wei, M. J. Wainwright, "The local geometry of testing in ellipses: Tight control via localized Kolmogorov widths", IEEE Trans. Info. Theory, vol. 66, no. 8, pp. 5110–5129, August, 2020. [bibtex
  10. R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, B. Yu, "Singularity, Misspecification, and the Convergence Rate of EM", Annals of Statistics, vol. 48, no. 6, pp. 3161––3182, 2020. [bibtex
  11. R. Pathak, M. J. Wainwright, "FedSplit: An algorithmic framework for fast federated optimization", NeurIPS (Neural Information Processing Systems), December, 2020. [bibtex
  12. W. Mou, C. J. Li, M. J. Wainwright, P. L. Bartlett, M. I. Jordan, "On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration", Conference on Learning Theory (COLT), vol. 125, pp. 2947–2997, 2020. [bibtex
  13. K. Bhatia, A. Pananjady, P. L. Bartlett, A. D. Dragan, M. J. Wainwright, "Preference learning along multiple criteria: A game-theoretic perspective", Neural Information Processing Systems, 2020. [bibtex
  14. M. Rabinovich, M. I. Jordan, M. J. Wainwright, "Lower bounds in multiple testing: A framework based on derandomized proxies", Tech. Report, 2005.03725, May, 2020. [bibtex

2019

  1. M. J. Wainwright, "High-dimensional statistics: A non-asymptotic viewpoint",Cambridge University Press , 2019. [bibtex
  2. Y. Wei, F. Yang, M. J. Wainwright, "Early stopping for kernel boosting algorithms: A general analysis with localized complexities", IEEE Trans. Info. Theory, vol. 65, no. 10, pp. 6685–6703, October, 2019. [bibtex
  3. N. B. Shah, S. Balakrishnan, M. J. Wainwright, "Low permutation-rank matrices: Structural properties and noisy completion", Journal of Machine Learning Research, vol. 20, pp. 1–43, June, 2019. [bibtex
  4. R. Heckel, N. B. Shah, K. Ramchandran, M. J. Wainwright, "Active Ranking from Pairwise Comparisons and When Parametric Assumptions Don’t Help", Annals of Statistics, vol. 47, no. 6, pp. 3099–3126, 2019. [bibtex
  5. Y. Wei, M. J. Wainwright, A. Guntuboyina, "The geometry of testing over convex cones: Generalized likelihood ratio tests and minimax radii", Annals of Statistics, vol. 47, no. 2, pp. 994–1024, 2019. [bibtex
  6. A. Ramdas, R. F. Barber, M. J. Wainwright, M. I. Jordan, "A Unified Treatment of Multiple Testing with Prior Knowledge using the $p$-filter", Annals of Statistics, vol. 47, no. 5, pp. 2790–2821, 2019. [bibtex
  7. K. Khamaru, M. J. Wainwright, "Convergence guarantees for a class of non-convex and non-smooth optimization problems", Journal of Machine Learning Research, vol. 20, pp. 1–52, 2019. [bibtex
  8. R. Dwivedi, Y. Chen, M. J. Wainwright, B. Yu, "Log-concave sampling: Metropolis-Hastings algorithms are fast.", Journal of Machine Learning Research, vol. 20, no. 183, pp. 1–42, 2019. [bibtex
  9. A. Ramdas, J. Chen, M. J. Wainwright, M. I. Jordan, "DAGGER: A sequential algorithm for FDR control on DAGs", Biometrika, vol. 106, no. 1, pp. 69–86, March, 2019. [bibtex
  10. N. B. Shah, S. Balakrishnan, M. J. Wainwright, "Feeling the Bern: Adaptive Estimators for Bernoulli Probabilities of Pairwise Comparisons", IEEE Trans. Info. Theory, vol. 65, no. 8, pp. 4854–4874, August, 2019. [bibtex
  11. J. Chen, M. I. Jordan, M. J. Wainwright, "HopSkipJump Attack: A query-efficient decision-based attack", IEEE Conference on Security and Privacy, October, 2019. [bibtex
  12. D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. L. Bartlett, M. J. Wainwright, "Derivative-free methods for policy optimization: Guarantees for linear-quadratic systems", AISTATS: Conference on AI and Statistics, 2019. [bibtex
  13. J. Chen, L. Song, M. J. Wainwright, M. I. Jordan, "L-Shapley and C-Shapley: Efficient Model Interpretation for Structured Data", International Conference on Learning Representations, May, 2019. [bibtex
  14. M. J. Wainwright, "Stochastic approximation with cone-contractive operators: Sharp $\ell_\infty$-bounds for Q-learning", Tech. Report, arxiv:1905.06265, May, 2019. [bibtex
  15. M. J. Wainwright, "Variance-reduced $Q$-learning is minimax optimal", Tech. Report, arxiv:1906.04697, June, 2019. [bibtex
  16. W. Mou, N. Ho, M. J. Wainwright, P. Bartlett, M. I. Jordan, "Sampling for Bayesian Mixture Models: MCMC with Polynomial-Time Mixing", Tech. Report, 1, December, 2019. [bibtex
  17. R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, B. Yu, "Challenges with EM in application to weakly identifiable mixture models", Tech. Report, arXiv:1902.00194, January, 2019. [bibtex

2018

  1. F. Yang, S. Balakrishnan, M. J. Wainwright, "Statistical and Computational Guarantees for the Baum-Welch Algorithm", Journal of Machine Learning Research, vol. 18, pp. 1–53, 2018. [bibtex
  2. Y. Chen, R. Dwivedi, M. J. Wainwright, B. Yu, "Fast MCMC Sampling Algorithms on Polytopes", Journal of Machine Learning Research, vol. 19, pp. 1–86, 2018. [bibtex
  3. A. Pananjady, M. J. Wainwright, T. A. Courtade, "Linear regression with shuffled data: Statistical and computational limits of permutation recovery", IEEE Transactions on Information Theory, vol. 64, no. 5, pp. 3286–3300, 2018. [bibtex
  4. H. Mania, A. Ramdas, M. J. Wainwright, M. I. Jordan and B. Recht, "On kernel methods for covariates that are rankings", Electronic Journal of Statistics, vol. 12, pp. 2537–2577, 2018. [bibtex
  5. N. B. Shah, M. J. Wainwright, "Simple, Robust and Optimal Ranking from Pairwise Comparisons", Journal of Machine Learning Research, vol. 18, pp. 1––18, 2018. [bibtex
  6. J. C. Duchi, M. I. Jordan, M. J. Wainwright, "Minimax optimal procedures for locally private estimation", Journal of the American Statistical Association, vol. 133, no. 521, pp. 182–215, June, 2018. [bibtex
  7. R. Heckel, M. Simchowitz, K. Ramchandran, M. J. Wainwright, "Approximate ranking from pairwise comparisons", AISTATS: Conference on AI and Statistics, vol. 84, pp. 1057–1066, 2018. [bibtex
  8. J. Chen, L. Song, M. J. Wainwright, M. I. Jordan, "Learning to Explain: An Information-Theoretic Perspective on Model Interpretation", ICML: International Conference on Machine Learning, 2018. [bibtex
  9. R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, "Theoretical guarantees for the EM algorithm when applied to misspecified Gaussian mixture models", NeurIPS Conference, December, 2018. [bibtex
  10. C. Mao, A. Pananjady, M. J. Wainwright, "Breaking the $1/\sqrtn$-barrier: Faster rates for permutation-based models in polynomial time", Conference on Learning Theory (COLT), no. 75, pp. 2037––2042, July, 2018. [pdf]  [bibtex
  11. K. Khamaru, M. J. Wainwright, "Convergence guarantees for a class of non-convex and non-smooth optimization problems", ICML: International Conference on Machine Learning, 2018. [bibtex
  12. R. Dwivedi, Y. Chen, M. J. Wainwright, B. Yu, "Log-concave sampling: Metropolis-Hastings algorithms are fast.", COLT: Conference on Computational Learning Theory, 2018. [bibtex

2017

  1. S. Van de Geer, M. J. Wainwright, "Concentration for (regularized) empirical risk minimization", Sankhya A, vol. 79, pp. 159–200, August, 2017. [bibtex
  2. M. Pilanci, M. J. Wainwright, "Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence", SIAM Jour. Opt., vol. 27, no. 1, pp. 205–245, March, 2017. [bibtex
  3. Y. Yang, M. Pilanci, M. J. Wainwright, "Randomized sketches for kernels: Fast and optimal non-parametric regression", Annals of Statistics, vol. 45, no. 3, pp. 991–1023, 2017. [bibtex
  4. S. Balakrishnan, M. J. Wainwright, B. Yu, "Statistical guarantees for the EM algorithm: From population to sample-based analysis", Annals of Statistics, vol. 45, no. 1, pp. 77––120, 2017. [bibtex
  5. P. Loh, M. J. Wainwright, "Support recovery without incoherence: A case for nonconvex regularization", Annals of Statistics, vol. 45, no. 6, pp. 2455–2482, 2017. [bibtex
  6. Y. Zhang, M. J. Wainwright, M. I. Jordan, "Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators", Elec. Jour. Statistics, vol. 11, pp. 752–799, 2017. [bibtex
  7. N. B. Shah, S. Balakrishnan, A. Guntuboyina, M. J. Wainwright, "Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues", IEEE Trans. Info. Theory, vol. 63, no. 2, pp. 934–959, February, 2017. [bibtex
  8. F. Yang, Y. Wei, M. J. Wainwright, "Early stopping for kernel boosting algorithms: A general analysis with localized complexities", NeurIPS (Neural Information Processing Systems), 2017. [bibtex
  9. J. Chen, M. Stern, M. J. Wainwright, M. I. Jordan, "Kernel Feature Selection via Conditional Covariance Minimization", NeurIPS: Advances in Neural Information Processing Systems, pp. 6949–6958, 2017. [bibtex
  10. A. Ramdas, J. Chen, M. J. Wainwright, M. I. Jordan, "QuTE: Decentralized multiple testing on sensor networks with false discovery rate control", 56th IEEE Conference on Decision and Control (CDC), 12, 2017. [bibtex
  11. A. Ramdas, F. Yang, M. J. Wainwright, M. I. Jordan, "Online control of false discovery rate with decaying memory", Neural Information Processing Systems, December, 2017. [bibtex
  12. F. Yang, A. Ramdas, K. Jamieson, M. J. Wainwright, "A framework for multi-armed bandit testing with online FDR control", Neural Information Processing Systems, December, 2017. [bibtex
  13. Y. Zhang, J. Lee, M. J. Wainwright, M. I. Jordan, "On the learnability of fully-connected neural networks", AISTATS, April, 2017. [bibtex
  14. A. Pananjady, M. J. Wainwright, T. Courtade, "Denoising linear models with permuted data", ISIT: IEEE International Symposium on Information Theory, 2017. [bibtex
  15. Y. Zhang, P. Liang, M. J. Wainwright, "Convexified Convolutional Neural Networks", ICML: 34th International Conference on Machine Learning, vol. 70, pp. 4044–4053, August, 2017. [pdf]  [bibtex
  16. N. B. Shah, S. Balakrishnan, M. J. Wainwright, "Low permutation-rank matrices: Structural properties and noisy completion", Tech. Report, 1, September, 2017. [bibtex

2016

  1. M. Pilanci, M. J. Wainwright, "Iterative Hessian Sketch: Fast and accurate solution approximation for constrained least-squares", Journal of Machine Learning Research, vol. 17, no. 53, pp. 1–38, April, 2016. [bibtex
  2. Y. Yang, M. J. Wainwright, M. I. Jordan, "On the computational complexity of high-dimensional Bayesian variable selection", Annals of Statistics, vol. 44, no. 6, pp. 2497–2532, 2016. [bibtex
  3. M. Chichignoud, J. Lederer, M. J. Wainwright, "A practical scheme and fast algorithm to tune the Lasso with optimality guarantees", Journal of Machine Learning Research, vol. 17, pp. 1–17, 2016. [bibtex
  4. N. B. Shah, S. Balakrishnan, J. Bradley, A. Parekh and K. Ramchandran, M. J. Wainwright, "Estimation from pairwise comparisons: Sharp minimax bounds with topology dependence", Journal of Machine Learning Research, vol. 17, no. 58, pp. 1–46, February, 2016. [bibtex
  5. Y. Wei, M. J. Wainwright, "Sharp minimax rates for testing monotone distributions", International Symposium on Information Theory, July, 2016. [bibtex
  6. C. Jin, S. Balakrishnan, M. J. Wainwright, M. I. Jordan, "Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences", NeurIPS Conference, December, 2016. [bibtex
  7. A. El Alaoui, X. Cheng, A. Ramdas, M. J. Wainwright, M. I. Jordan, "Asymptotic behavior of $\ell_p$-based Laplacian regularization in semi-supervised learning", COLT: Conference on Learning Theory, June, 2016. [bibtex
  8. C. Jin, S. Balakrishnan, M. J. Wainwright, M. I. Jordan, "Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences", NeurIPS Conference, December, 2016. [bibtex

2015

  1. T. Hastie, R. Tibshirani, M. J. Wainwright, "Statistical learning with sparsity: The Lasso and generalizations",CRC Press, Chapman and Hall , 2015. [bibtex
  2. M. Pilanci, M. J. Wainwright, "Randomized sketches of convex programs with sharp guarantees", IEEE Trans. Info. Theory, vol. 9, no. 61, pp. 5096–5115, September, 2015. [bibtex
  3. M. Pilanci, M. J. Wainwright, L. El Ghaoui, "Sparse learning via Boolean relaxations", Mathematical Programming, vol. 151, no. 1, pp. 63–87, June, 2015. [bibtex
  4. M. Pilanci, M. J. Wainwright, "Randomized sketches of convex programs with sharp guarantees", IEEE Trans. Info. Theory, vol. 9, no. 61, pp. 5096–5115, September, 2015. [bibtex
  5. G. Schiebinger, M. J. Wainwright, B. Yu, "The geometry of kernelized spectral clustering", Annals of Statistics, vol. 43, no. 2, pp. 819–846, 2015. [bibtex
  6. P. Loh, M. J. Wainwright, "Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima", Journal of Machine Learning Research, vol. 16, pp. 559–616, April, 2015. [bibtex
  7. Y. Zhang, J. C. Duchi, M. J. Wainwright, "Divide and Conquer Kernel Ridge Regression: A distributed algorithm with minimax optimal rates", Journal of Machine Learning Research, vol. 16, pp. 3299–3340, December, 2015. [bibtex
  8. J. C. Duchi, M. I. Jordan, M. J. Wainwright and A. Wibisono, "Optimal rates for zero-order optimization: the power of two function evaluations", IEEE Trans. Info. Theory, vol. 61, no. 5, pp. 2788–2806, 2015. [bibtex
  9. Y. Chen, M. J. Wainwright, "Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees", Tech. Report, arxiv:1509.03025, September, 2015. [bibtex
  10. M. J. Wainwright, "Graphical models and message-passing algorithms: some introductory lectures", Mathematical foundations of complex networked information system, vol. 2141, 2015. [bibtex
  11. Y. Zhang, J. Lee, M. J. Wainwright, M. I. Jordan, "Learning halfspaces and neural networks with random initialization", Tech. Report, arXiv:1511.07948, November, 2015. [bibtex

2014

  1. G. Raskutti, M. J. Wainwright, B. Yu, "Early stopping and non-parametric regression: An optimal data-dependent stopping rule", Journal of Machine Learning Research, vol. 15, pp. 335–366, 2014. [bibtex
  2. J. C. Duchi, M. J. Wainwright, M. I. Jordan, "Privacy-aware learning", Journal of the ACM, vol. 61, no. 6, pp. Article 37, November, 2014. [bibtex
  3. M. J. Wainwright, "Structured regularizers for high-dimensional problems: Statistical and computational issues", Annual Review of Statistics and its Applications, vol. 1, pp. 233–253, January, 2014. [bibtex
  4. M. J. Wainwright, "Constrained forms of statistical minimax: Computation, communication and privacy", Proceedings of the International Congress of Mathematicians, 2014. [bibtex
  5. Y. Zhang, M. J. Wainwright, M. I. Jordan, "Lower bounds on the performance of polynomial-time algorithms for sparse linear regression", Conference on Computational Learning Theory, June, 2014. [bibtex
  6. J. C. Duchi, M. J. Wainwright, M. I. Jordan, "Local privacy and statistical minimax rates", Foundations of Computer Science (FOCS) Conference, 2014. [bibtex
  7. J. C. Duchi, M. I. Jordan, M. J. Wainwright, Y. Zhang, "Optimality guarantees for distributed statistical estimation", Tech. Report, 1, June, 2014. [bibtex

2013

  1. N. Noorshams, M. J. Wainwright, "Belief Propagation for Continuous State Spaces: Stochastic Message-Passing with Quantitative Guarantees", Journal of Machine Learning Research, vol. 14, pp. 2799–2835, 2013. [www]  [bibtex
  2. N. Noorshams, M. J. Wainwright, "Stochastic belief propagation: A low-complexity alternative to the sum-product algorithm", IEEE Trans. Info. Theory, vol. 59, no. 4, pp. 1981–2000, April, 2013. [bibtex
  3. P. Loh, M. J. Wainwright, "Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses", Annals of Statistics, vol. 41, no. 6, pp. 3022–3049, December, 2013. [bibtex
  4. Y. Zhang, J. C. Duchi, M. J. Wainwright, "Communication-efficient algorithms for statistical optimization", Journal of Machine Learning Research, vol. 14, pp. 3321–3363, November, 2013. [bibtex
  5. Y. Zhang, J. C. Duchi, and M. I. Jordan, M. J. Wainwright, "Information-theoretic lower bounds for distributed statistical estimation with communication constraints", NeurIPS: Neural Information Processing Systems Conference, 2013. [bibtex
  6. Y. Zhang, J. C. Duchi, M. J. Wainwright, "Divide and Conquer Kernel Ridge Regression", Computational Learning Theory (COLT) Conference, July, 2013. [bibtex
  7. J. C. Duchi, M. J. Wainwright, "Distance-based and continuum Fano inequalities with applications to statistical estimation", Tech. Report, arXiv:1311.2669, 2013. [bibtex

2012

  1. M. J. Wainwright, "Discussion: Latent graphical model selection by convex optimization", Annals of Statistics, vol. 40, no. 4, pp. 1978–1983, 2012. [bibtex
  2. S. Negahban, M. J. Wainwright, "Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise", Journal of Machine Learning Research, vol. 13, pp. 1665–1697, May, 2012. [bibtex
  3. A. Agarwal, S. Negahban, M. J. Wainwright, "Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions", Annals of Statistics, vol. 40, no. 2, pp. 1171–1197, 2012. [bibtex
  4. A. Agarwal, S. Negahban, M. J. Wainwright, "Fast global convergence of gradient methods for high-dimensional statistical recovery", Annals of Statistics, vol. 40, no. 5, pp. 2452–2482, 2012. [bibtex
  5. G. Raskutti, M. J. Wainwright, B. Yu, "Minimax-optimal rates for sparse additive models over kernel classes via convex programming", Journal of Machine Learning Research, vol. 12, pp. 389–427, March, 2012. [bibtex
  6. J. C. Duchi, A. Agarwal, M. J. Wainwright, "Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling", IEEE Trans. Automatic Control, vol. 57, no. 3, pp. 592–606, March, 2012. [bibtex
  7. A. Agarwal, P. L. Bartlett, P. Ravikumar, M. J. Wainwright, "Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization", IEEE Trans. Info. Theory, vol. 58, no. 5, pp. 3235–3249, May, 2012. [bibtex
  8. S. Negahban, P. Ravikumar, M. J. Wainwright, B. Yu, "A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers", Statistical Science, vol. 27, no. 4, pp. 538–557, December, 2012. [bibtex
  9. N. P. Santhanam, M. J. Wainwright, "Information-theoretic limits of selecting binary graphical models in high dimensions", IEEE Trans. Info Theory, vol. 58, no. 7, pp. 4117–4134, May, 2012. [bibtex
  10. J. C. Duchi, P. L. Bartlett, M. J. Wainwright, "Randomized smoothing for stochastic optimization", SIAM Journal on Optimization, vol. 22, no. 2, pp. 674–701, 2012. [bibtex
  11. P. Loh, M. J. Wainwright, "High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity", Annals of Statistics, vol. 40, no. 3, pp. 1637–1664, September, 2012. [bibtex
  12. A. A. Amini, M. J. Wainwright, "Sampled forms of functional PCA in reproducing kernel Hilbert spaces", Annals of Statistics, vol. 40, no. 5, pp. 2483–2510, 2012. [bibtex
  13. P. Loh, M. J. Wainwright, "No voodoo here! Learning discrete graphical models via inverse covariance estimation", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex
  14. J. C. Duchi, M. J. Wainwright, M. I. Jordan, "Privacy-aware learning", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex
  15. J. C. Duchi, A. Wibisono, M. J. Wainwright and M. I. Jordan, "Finite sample convergence rates of zero-order stochastic optimization methods", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex
  16. Y. Zhang, J. C. Duchi, M. J. Wainwright, "Communication-efficient algorithms for statistical optimization", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex
  17. A. Agarwal, S. Negahban, M. J. Wainwright, "Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions", Neural Information Processing Systems (NeurIPS), December, 2012. [bibtex

2011

  1. N. Noorshams, M. J. Wainwright, "Non-asymptotic analysis of an optimal algorithm for network-constrained averaging with noisy links", IEEE Journal Selected Topics in Signal Processing, vol. 5, no. 4, pp. 833–844, August, 2011. [bibtex
  2. R. Rajagopal, M. J. Wainwright, "Network-based consensus with general noisy channels", IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 373–385, January, 2011. [bibtex
  3. G. Raskutti, M. J. Wainwright, B. Yu, "Minimax rates of estimation for high-dimensional linear regression over $\ell_q$-balls", IEEE Trans. Information Theory, vol. 57, no. 10, pp. 6976––6994, October, 2011. [bibtex
  4. P. Ravikumar, M. J. Wainwright, G. Raskutti, B. Yu, "High-dimensional covariance estimation by minimizing $\ell_1$-penalized log-determinant divergence", Electronic Journal of Statistics, vol. 5, pp. 935–980, 2011. [bibtex
  5. S. Negahban, M. J. Wainwright, "Estimation of (near) low-rank matrices with noise and high-dimensional scaling", Annals of Statistics, vol. 39, no. 2, pp. 1069–1097, 2011. [bibtex
  6. G. Obozinski, M. J. Wainwright, M. I. Jordan, "Union support recovery in high-dimensional multivariate regression", Annals of Statistics, vol. 39, no. 1, pp. 1–47, January, 2011. [bibtex
  7. S. Negahban, M. J. Wainwright, "Simultaneous support recovery in high-dimensional regression: Benefits and perils of $\ell_1, \infty$-regularization", IEEE Trans. Info. Theory, vol. 57, no. 6, pp. 3481–3863, June, 2011. [bibtex
  8. P. Loh, M. J. Wainwright, "High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity", NeurIPS Conference, December, 2011. [bibtex

2010

  1. M. J. Wainwright, E. Maneva, E. Martinian, "Lossy Source Compression using Low-Density Generator Matrix Codes: Analysis and Algorithms", IEEE Trans. Info. Theory, vol. 56, no. 3, pp. 1351–1368, March, 2010. [bibtex
  2. A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, K. Ramchandran, "Network coding for distributed storage systems", IEEE Trans. Info. Theory, vol. 56, no. 9, pp. 4539–4551, September, 2010. [bibtex
  3. G. Raskutti, M. J. Wainwright, B. Yu, "Restricted eigenvalue conditions for correlated Gaussian designs", Journal of Machine Learning Research, vol. 11, pp. 2241–2259, August, 2010. [bibtex
  4. P. Ravikumar, A. Agarwal, M. J. Wainwright, "Message-passing for graph-structured linear programs: Proximal projections, convergence and rounding schemes", Journal of Machine Learning Research, vol. 11, pp. 1043–1080, March, 2010. [bibtex
  5. W. Wang, M. J. Wainwright, K. Ramchandran, "Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices", IEEE Trans. Info Theory, vol. 56, no. 6, pp. 2967–2979, June, 2010. [bibtex
  6. P. Ravikumar, M. J. Wainwright, J. D. Lafferty, "High-dimensional Ising model selection using $\ell_1$-regularized logistic regression", Annals of Statistics, vol. 38, no. 3, pp. 1287–1319, 2010. [bibtex
  7. Z. Zhang, V. Anantharam, M. J. Wainwright, V. Anantharam, "An efficient 10GBASE-T Ethernet LDPC decoder design with low error floors", IEEE Jour. Solid-State Circuits, vol. 45, no. 4, pp. 843–855, March, 2010. [bibtex
  8. D. Omidiran, M. J. Wainwright, "High-dimensional Variable Selection with Sparse Random Projections: Measurement sparsity and statistical efficiency", Journal of Machine Learning Research, vol. 11, pp. 2361–2386, August, 2010. [bibtex
  9. S. Negahban, M. J. Wainwright, "Estimation of (near) low-rank matrices with noise and high-dimensional scaling", Proceedings of the ICML Conference, June, 2010. [bibtex
  10. W. Wang, M. J. Wainwright, K. Ramchandran, "Information-theoretic bounds on model selection for Gaussian Markov random fields", IEEE International Symposium on Information Theory, 2010. [bibtex

2009

  1. M. J. Wainwright, "Information-theoretic bounds on sparsity recovery in the high-dimensional and noisy setting", IEEE Trans. Info. Theory, vol. 55, pp. 5728–5741, December, 2009. [bibtex
  2. M. J. Wainwright, "Sharp thresholds for high-dimensional and noisy sparsity recovery using $\ell_1$-constrained quadratic programming (Lasso)", IEEE Trans. Info. Theory, vol. 55, pp. 2183–2202, May, 2009. [bibtex
  3. M. J. Wainwright, E. Martinian, "Low-density codes that are optimal for binning and coding with side information", IEEE Trans. Info. Theory, vol. 55, no. 3, pp. 1061–1079, March, 2009. [bibtex
  4. X. Nguyen, M. J. Wainwright, M. I. Jordan, "On surrogate losses and $f$-divergences", Annals of Statistics, vol. 37, no. 2, pp. 876–903, 2009. [bibtex
  5. A. G. Dimakis, A. A. Gohari, M. J. Wainwright, "Guessing facets: Polytope structure and improved LP decoding", IEEE Trans. Information Theory, vol. 55, no. 8, pp. 3479–3487, August, 2009. [bibtex
  6. L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolic, M. J. Wainwright, "Predicting error floors of structured LDPC codes: Deterministic bounds and estimates", IEEE Jour. Sel. Areas. Comm, vol. 27, no. 6, pp. 908–917, August, 2009. [bibtex
  7. L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, B. Nikolic, "Analysis of Absorbing Sets and Fully Absorbing Sets for Array-Based LDPC Codes", IEEE Trans. Info. Theory, vol. 56, no. 1, pp. 181–201, January, 2009. [bibtex
  8. Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, M. J. Wainwright, B. Nikolic, "Design of LDPC Decoders for Low Bit Error Rate Performance: Quantization and Algorithm Choices", IEEE Trans. Communications, 2009. [bibtex]  (To appear
  9. A. A. Amini, M. J. Wainwright, "High-dimensional analysis of semdefinite relaxations for sparse principal component analysis", Annals of Statistics, vol. 5B, pp. 2877–2921, 2009. [bibtex
  10. J. Duchi, A. Agarwal, M. J. Wainwright, "Distributed dual averaging in networks", NeurIPS Conference, December, 2009. [bibtex

2008

  1. M. J. Wainwright, M. I. Jordan, "Graphical models, exponential families and variational inference", Foundations and Trends in Machine Learning, vol. 1, pp. 1––305, December, 2008. [bibtex
  2. X. Nguyen, M. J. Wainwright, M. I. Jordan, "On optimal quantization rules for some sequential decision problems", IEEE Trans. Info. Theory, vol. 54, no. 7, pp. 3285–3295, July, 2008. [bibtex
  3. A. G. Dimakis, A. Sarwate, M. J. Wainwright, "Geographic gossip: Efficient averaging for sensor networks", IEEE Trans. Signal Processing, vol. 53, pp. 1205–1216, March, 2008. [bibtex
  4. C. Daskalakis, A. G. Dimakis, R. M. Karp, M. J. Wainwright, "Probabilistic analysis of linear programming decoding", IEEE Trans. Information Theory, vol. 54, no. 8, pp. 3565–3578, 2008. [bibtex
  5. T. G. Roosta, M. J. Wainwright, S. S. Sastry, "Convergence analysis of reweighted sum-product algorithms", IEEE Trans. Signal Processing, vol. 56, no. 9, pp. 4293–4305, September, 2008. [bibtex
  6. N. P. Santhanam, M. J. Wainwright, "Information-theoretic limits of high-dimensional model selection", International Symposium on Information Theory, July, 2008. [bibtex
  7. S. Negahban, M. J. Wainwright, "Benefits and perils of block regularization in high dimensions", Neural Information Processing Systems (NeurIPS), December, 2008. [bibtex
  8. P. Lee, L. Dolecek, Z. Zhang, V. Anantharam, B. Nikolic, M. J. Wainwright, "Error Floors in LDPC Codes: Fast Simulation, Bounds and Hardware Emulation", IEEE Int. Symp. Info. Theory, July, 2008. [bibtex
  9. Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam and M. J. Wainwright, "Lowering LDPC error floors by post-processing", Proc. IEEE GLOBECOM, September, 2008. [bibtex

2007

  1. M. J. Wainwright, "Sparse graph codes for side information and binning", IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 47–57, September, 2007. [bibtex
  2. E. Maneva, E. Mossel, M. J. Wainwright, "A new look at survey propagation and its generalizations", Journal of the ACM, vol. 54, no. 4, pp. 2–41, 2007. [bibtex
  3. J. Feldman, T. Malkin, R. A. Servedio, C. Stein, M. J. Wainwright, "LP Decoding Corrects a Constant Fraction of Errors", IEEE Trans. Information Theory, vol. 53, no. 1, pp. 82–89, January, 2007. [bibtex
  4. E. B. Sudderth, M. J. Wainwright, A. S. Willsky, "Loop series and Bethe variational bounds for attractive graphical models", NeurIPS 21, 2007. [bibtex
  5. C. Daskalakis, A. G. Dimakis, R. M. Karp, M. J. Wainwright, "Probabilistic Analysis of Linear Programming Decoding", Proceedings of the 18th Annual Symposium on Discrete Algorithms (SODA), January, 2007. [bibtex
  6. L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, B. Nikolic, "Analysis of absorbing sets for array-based LDPC codes", IEEE Int. Conf. Communications (ICC), June, 2007. [bibtex
  7. Z. Zhang, L. Dolecek, V. Anantharam, M. J. Wainwright, B. Nikolic, "Quantization effects in low-density parity-check decoders", IEEE Int. Conf. Communications (ICC), pp. 6321–6237, June, 2007. [bibtex
  8. L. Dolecek, Z. Zhang, M. J. Wainwright, V. Anantharam, M. J. Wainwright, "Evaluation of the low frame error rate performance of LDPC codes using importance sampling", Information Theory Workshop (ITW), September, 2007. [bibtex

2006

  1. M. J. Wainwright, "Estimating the ``wrong'' graphical model: Benefits in the computation-limited regime", Journal of Machine Learning Research, vol. 7, pp. 1829–1859, September, 2006. [bibtex
  2. M. J. Wainwright, M. I. Jordan, "Log-determinant relaxation for approximate inference in discrete Markov random fields", IEEE Trans. Signal Processing, vol. 54, no. 6, pp. 2099–2109, June, 2006. [bibtex
  3. M. Cetin, L. Chen, J. W. Fisher, A. T. Ihler, R. L. Moses, M. J. Wainwright, A. S. Willsky, "Distributed fusion in sensor networks", IEEE Signal Processing Magazine, vol. 23, pp. 42–55, July, 2006. [bibtex
  4. M. J. Wainwright, P. Ravikumar, J. D. Lafferty, "High-dimensional graph selection using $\ell_1$-regularized logistic regression", NeurIPS Conference, December, 2006. [bibtex
  5. X. Nguyen, M. J. Wainwright, M. I. Jordan, "On optimal quantization rules for some sequential decision problems", International Symposium on Information Theory, July, 2006. [bibtex]  (Available at arxiv:math.ST/0608556
  6. A. G. Dimakis, A. Sarwate, M. J. Wainwright, "Geographic Gossip: Efficient aggregation in sensor networks", Information Processing in Sensor Networks, March, 2006. [bibtex
  7. R. Rajagopal, M. J. Wainwright, P. Varaiya, "Universal quantile estimation with feedback in the communication-constrained setting", International Symposium on Information Theory, July, 2006. [bibtex
  8. A. G. Dimakis, M. J. Wainwright, "Guessing Facets: Improved LP decoding and Polytope Structure", International Symposium on Information Theory, July, 2006. [bibtex
  9. Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, M. J. Wainwright, "Investigation of error floors of structured low-density parity check codes by hardware emulation", Proceedings of IEEE Globecom, November, 2006. [bibtex
  10. E. Martinian, M. J. Wainwright, "Low density codes achieve the rate-distortion bound", Data Compression Conference, vol. 1, pp. 153–162, March, 2006. [bibtex]  (Available at arxiv:cs.IT/061123
  11. E. Martinian, M. J. Wainwright, "Analysis of LDGM and compound codes for lossy compression and binning", Workshop on Information Theory and Applications (ITA), pp. 229–233, February, 2006. [bibtex]  (Available at arxiv:cs.IT/0602046
  12. E. Martinian, M. J. Wainwright, "Low density codes can achieve the Wyner-Ziv and Gelfand-Pinsker bounds", International Symposium on Information Theory, pp. 484–488, July, 2006. [bibtex]  (Available at arxiv:cs.IT/0605091
  13. M. J. Wainwright, M. I. Jordan, "A variational principle for graphical models", New Directions in Statistical Signal Processing, October, 2006. [bibtex

2005

  1. M. J. Wainwright, T. S. Jaakkola, A. S. Willsky, "Exact MAP estimates via agreement on (hyper)trees: Linear programming and message-passing", IEEE Trans. Information Theory, vol. 51, no. 11, pp. 3697–3717, November, 2005. [bibtex
  2. M. J. Wainwright, T. S. Jaakkola and A. S. Willsky, "A new class of upper bounds on the log partition function", IEEE Trans. Info. Theory, vol. 51, no. 7, pp. 2313–2335, July, 2005. [bibtex
  3. X. Nguyen, M. J. Wainwright, M. I. Jordan, "Nonparametric decentralized detection using kernel methods", IEEE Trans. Signal Processing, vol. 53, no. 11, pp. 4053–4066, November, 2005. [bibtex
  4. J. Feldman, M. J. Wainwright, D. R. Karger, "Using linear programming to decode binary linear codes", IEEE Trans. Info. Theory, vol. 51, pp. 954–972, March, 2005. [bibtex
  5. M. J. Wainwright, E. Maneva, "Lossy source coding by message-passing and decimation over generalized codewords of LDGM codes", International Symposium on Information Theory, September, 2005. [bibtex]  (Available at arxiv:cs.IT/0508068
  6. E. Maneva, E. Mossel, M. J. Wainwright, "A New Look at Survey Propagation and its Generalizations", Proceedings of the 16th Annual Symposium on Discrete Algorithms (SODA), pp. 1089–1098, 2005. [bibtex
  7. V. Kolmogorov, M. J. Wainwright, "On optimality properties of tree-reweighted message-passing", Uncertainty in Artificial Intelligence, July, 2005. [bibtex
  8. X. Nguyen, M. J. Wainwright, M. I. Jordan, "Divergence measures, surrogate loss functions and experimental design", Advances in Neural Information Processing Systems, 2005. [bibtex

2004

  1. M. J. Wainwright, T. S. Jaakkola and A. S. Willsky, "Tree consistency and bounds on the max-product algorithm and its generalizations", Statistics and Computing, vol. 14, pp. 143–166, April, 2004. [bibtex
  2. E. Sudderth, M. J. Wainwright, A. S. Willsky, "Embedded trees: Estimation of Gaussian processes on graphs with cycles", IEEE Trans. Signal Processing, vol. 52, no. 11, pp. 3136–3150, 2004. [bibtex
  3. M. J. Wainwright, M. I. Jordan, "Treewidth-based conditions for exactness of the Sherali-Adams and Lasserre relaxations", Tech. Report, 1, September, 2004. [bibtex

2003

  1. M. J. Wainwright, T. S. Jaakkola and A. S. Willsky, "Tree-based reparameterization framework for analysis of sum-product and related algorithms", IEEE Trans. Info. Theory, vol. 49, no. 5, pp. 1120–1146, May, 2003. [bibtex
  2. J. Portilla, V. Strela, M. J. Wainwright, E. P. Simoncelli, "Image denoising using scale mixtures of Gaussians in the wavelet domain", IEEE Trans. Image Processing, vol. 12, pp. 1338–1351, 2003. [bibtex
  3. M. J. Wainwright, M. I. Jordan, "Variational inference in graphical models: The view from the marginal polytope", Proceedings of the Allerton Conference on Communication, Control and Computing, October, 2003. [bibtex
  4. L. Chen, M. J. Wainwright, M. Cetin, A. Willsky, "Multitarget-multisensor data association using the tree-reweighted \ max-product algorithm", SPIE Aerosense Conference, April, 2003. [bibtex
  5. J. Feldman, D. R. Karger, M. J. Wainwright, "Using linear programming to decode LDPC codes", Conference on Information Science and Systems, March, 2003. [bibtex

2002

  1. M. J. Wainwright, "Stochastic processes on graphs with cycles: geometric and variational approaches", PhD thesis, MIT, January, 2002. [bibtex
  2. M. J. Wainwright, T. S. Jaakkola, A. S. Willsky, "Tree-based reparameterization for approximate inference on loopy graphs", NeurIPS 14, 2002. [bibtex
  3. M. J. Wainwright, T. S. Jaakkola, A. S. Willsky, "A new class of upper bounds on the log partition function", Uncertainty in Artificial Intelligence, vol. 18, August, 2002. [bibtex
  4. M. J. Wainwright, T. S. Jaakkola, A. S. Willsky, "Exact MAP estimates by (hyper)tree agreement", NeurIPS, vol. 15, December, 2002. [bibtex
  5. M. J. Wainwright, O. Schwartz, E. P. Simoncelli, "Natural image statistics and divisive normalization: Modeling nonlinearities and adaptation in cortical neurons", Statistical Theories of the Brain, 2002. [bibtex

2001

  1. M. J. Wainwright, E. P. Simoncelli, A. S. Willsky, "Random cascades on wavelet trees and their use in modeling and analyzing natural images", Applied Computational and Harmonic Analysis, vol. 11, pp. 89–123, 2001. [bibtex
  2. M. J. Wainwright, E. B. Sudderth, A. S. Willsky, "Tree-based modeling and estimation of Gaussian processes on graphs with cycles", NeurIPS 13, pp. 661–667, 2001. [bibtex
  3. J. Portilla, V. Strela, E. Simoncelli, M. J. Wainwright, "Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain", IEEE Int. Conf. Image Proc., September, 2001. [bibtex

1999

  1. M. J. Wainwright, "Visual adaptation as optimal information transmission", Vision Research, vol. 39, pp. 3960–3974, 1999. [bibtex
  2. M. J. Wainwright, E. P. Simoncelli, "Scale mixtures of Gaussians and the statistics of natural images", Neural Information Processing Systems 12, vol. 12, pp. 855–861, December, 1999. [bibtex
  3. M. J. Wainwright, E. P. Simoncelli, "Explaining adaptation in V1 neurons with a statistically-optimized normalization model", Invest. Opthamology and Visual Science (Supplement), pp. 3017, 1999. [bibtex